×

zbMATH — the first resource for mathematics

Containment control of heterogeneous multi-agent systems. (English) Zbl 1317.93026
Summary: In this paper, we consider the containment control problem for a group of autonomous agents modeled by heterogeneous dynamics. The communication networks among the leaders and the followers are directed graphs. When the leaders are first-order integrator agents, we present a linear protocol for heterogeneous multi-agent systems such that the second-order integrator agents converge to the convex hull spanned by the first-order integrator agents if and only if the directed graph contains a directed spanning forest. If the leaders are second-order integrator agents, we propose a nonlinear protocol and obtain a necessary and sufficient condition that the heterogeneous multi-agent system solves the containment control problem in finite time. Simulation examples are also provided to illustrate the effectiveness of the theoretical results.

MSC:
93A14 Decentralized systems
68T42 Agent technology and artificial intelligence
94C15 Applications of graph theory to circuits and networks
93C15 Control/observation systems governed by ordinary differential equations
PDF BibTeX Cite
Full Text: DOI
References:
[1] DOI: 10.1109/TCST.2010.2053542
[2] DOI: 10.1016/j.chaos.2005.08.133 · Zbl 1142.34346
[3] DOI: 10.1007/978-1-4613-0163-9
[4] DOI: 10.1016/S0167-6911(02)00119-6 · Zbl 0994.93049
[5] DOI: 10.1016/j.automatica.2007.07.004 · Zbl 1283.93019
[6] DOI: 10.1016/j.automatica.2006.02.013 · Zbl 1117.93300
[7] DOI: 10.1109/TAC.2008.930098 · Zbl 1367.93398
[8] DOI: 10.1016/j.automatica.2009.09.002 · Zbl 1192.93013
[9] DOI: 10.1109/TAC.2010.2088710 · Zbl 1368.93378
[10] DOI: 10.1002/rnc.1847 · Zbl 1284.93019
[11] Liu H., Consensus and containment control problems of multi-agent systems (2012)
[12] DOI: 10.1016/j.automatica.2011.06.005 · Zbl 1227.93010
[13] DOI: 10.1016/j.sysconle.2012.01.012 · Zbl 1250.93010
[14] DOI: 10.1016/j.automatica.2012.05.010 · Zbl 1246.93008
[15] DOI: 10.1016/j.automatica.2012.02.032 · Zbl 1246.93104
[16] DOI: 10.1016/j.automatica.2010.09.005 · Zbl 1205.93010
[17] DOI: 10.1016/j.automatica.2011.01.077 · Zbl 1233.93009
[18] DOI: 10.1109/JPROC.2006.887293 · Zbl 1376.68138
[19] DOI: 10.1109/TAC.2004.834113 · Zbl 1365.93301
[20] DOI: 10.1109/TAC.2012.2188425 · Zbl 1369.93043
[21] DOI: 10.1016/j.automatica.2011.05.014 · Zbl 1227.93011
[22] Rockafellar R.T, Convex analysis (1972)
[23] DOI: 10.1109/TAC.2010.2041610 · Zbl 1368.93391
[24] DOI: 10.1002/rnc.1144 · Zbl 1266.93013
[25] DOI: 10.1080/00207179.2011.622792 · Zbl 1236.93141
[26] DOI: 10.1080/00207179.2012.669048 · Zbl 1282.93031
[27] DOI: 10.1080/00207179.2012.713986 · Zbl 1253.93008
[28] DOI: 10.1016/j.sysconle.2012.05.009 · Zbl 1252.93009
[29] DOI: 10.1049/iet-cta.2011.0033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.