×

Regularity for a local-nonlocal transmission problem. (English) Zbl 1317.35263

Summary: We formulate and study an elliptic transmission-like problem combining local and nonlocal elements. Let \(\mathbb R^n\) be separated into two components by a smooth hypersurface \(\varGamma\). On one side of \(\varGamma\), a function satisfies a local second-order elliptic equation. On the other, it satisfies a nonlocal one of lower order. In addition, a nonlocal transmission condition is imposed across the interface \(\varGamma\), which has a natural variational interpretation. We deduce the existence of solutions to the corresponding Dirichlet problem, and show that under mild assumptions they are Hölder continuous, following the method of De Giorgi. The principal difficulty stems from the lack of scale invariance near \(\varGamma\), which we circumvent by deducing a special energy estimate which is uniform in the scaling parameter. We then turn to the question of optimal regularity and qualitative properties of solutions, and show that (in the case of constant coefficients and flat \(\varGamma\)) they satisfy a kind of transmission condition, where the ratio of “fractional conormal derivatives” on the two sides of the interface is fixed. A perturbative argument is then given to show how to obtain regularity for solutions to an equation with variable coefficients and smooth interface. Throughout, we pay special attention to a nonlinear version of the problem with a drift given by a singular integral operator of the solution, which has an interpretation in the context of quasigeostrophic dynamics.

MSC:

35Q86 PDEs in connection with geophysics
86A10 Meteorology and atmospheric physics
35Q35 PDEs in connection with fluid mechanics
76B65 Rossby waves (MSC2010)
35B65 Smoothness and regularity of solutions to PDEs
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Agmon S., Douglis A., Nirenberg L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I. Commun. Pure Appl. Math. 12, 623-727 (1959) · Zbl 0093.10401
[2] Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II. Commun. Pure Appl. Math. 17, 35-92 (1964) · Zbl 0123.28706
[3] Bogdan, K., Burdzy, K., Chen, Z.Q.: Censored stable processes. Probab. Theory Related Fields127(1), 89-152 (2003). doi:10.1007/s00440-003-0275-1 · Zbl 1032.60047
[4] Bogdan, K., Dyda, B.: The best constant in a fractional Hardy inequality. Math. Nachr. 284(5-6), 629-638 (2011). doi:10.1002/mana.200810109 · Zbl 1217.26025
[5] Bourgeois, A.J., Beale, J.T.: Validity of the quasigeostrophic model for large-scale flow in the atmosphere and ocean. SIAM J. Math. Anal. 25(4), 1023-1068 (1994). doi:10.1137/S0036141092234980 · Zbl 0811.35097
[6] Caffarelli, L., Chan, C.H., Vasseur, A.: Regularity theory for parabolic nonlinear integral operators. J. Am. Math. Soc. 24(3), 849-869 (2011). doi:10.1090/S0894-0347-2011-00698-X · Zbl 1223.35098
[7] Caffarelli, L.A., Cabré, X.: Fully nonlinear elliptic equations, American Mathematical Society Colloquium Publications, vol. 43. American Mathematical Society, Providence, 1995 · Zbl 0834.35002
[8] Caffarelli, L.A., Vasseur, A.: Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. (2)171(3), 1903-1930 (2010). doi:10.4007/annals.2010.171.1903 · Zbl 1204.35063
[9] Chae, D., Constantin, P., Wu, J.: Dissipative models generalizing the 2D Navier-Stokes and surface quasi-geostrophic equations. Indiana Univ. Math. J. 61(5), 1997-2018 (2012). doi:10.1512/iumj.2012.61.4756 · Zbl 1288.35416
[10] Constantin, P., Cordoba, D., Wu, J.: On the critical dissipative quasi-geostrophic equation. Indiana Univ. Math. J. 50(Special Issue), 97-107 (2001). doi:10.1512/iumj.2008.57.3629. Dedicated to Professors Ciprian Foias and Roger Temam (Bloomington, IN, 2000) · Zbl 0989.86004
[11] Constantin, P., Vicol, V.: Nonlinear maximum principles for dissipative linear nonlocal operators and applications. Geom. Funct. Anal. 22(5), 1289-1321 (2012). doi:10.1007/s00039-012-0172-9 · Zbl 1256.35078
[12] Constantin, P., Wu, J.: Behavior of solutions of 2D quasi-geostrophic equations. SIAM J. Math. Anal. 30(5), 937-948 (1999). doi:10.1137/S0036141098337333 · Zbl 0957.76093
[13] Dabkowski, M., Kiselev, A., Silvestre, L., Vicol, V.: Global well-posedness of slightly supercritical active scalar equations. Anal. PDE7(1), 43-72 (2014). doi:10.2140/apde.2014.7.43 · Zbl 1294.35092
[14] De Giorgi, E.: Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari. Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3)3, 25-43 (1957) · Zbl 0084.31901
[15] Desjardins B., Grenier E.: Derivation of quasi-geostrophic potential vorticity equations. Adv. Differ. Equ. 3(5), 715-752 (1998) · Zbl 0967.76096
[16] Dong, H., Pavlović, N.: A regularity criterion for the dissipative quasi-geostrophic equations. Ann. Inst. H. Poincaré Anal. Non Linéaire26(5), 1607-1619 (2009). doi:10.1016/j.anihpc.2008.08.001 · Zbl 1176.35133
[17] Friedlander, S., Vicol, V.: Global well-posedness for an advection-diffusion equation arising in magneto-geostrophic dynamics. Ann. Inst. H. Poincaré Anal. Non Linéaire28(2), 283-301 (2011). doi:10.1016/j.anihpc.2011.01.002 · Zbl 1277.35291
[18] Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, 2nd edn. Springer, Berlin, 1983 · Zbl 0562.35001
[19] Han, Q., Lin, F.: Elliptic partial differential equations, Courant Lecture Notes in Mathematics, vol. 1, 2nd edn. Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, 2011 · Zbl 1210.35031
[20] Held, I.M., Pierrehumbert, R.T., Garner, S.T., Swanson, K.L.: Surface quasi-geostrophic dynamics. J. Fluid Mech. 282, 1-20 (1995). doi:10.1017/S0022112095000012 · Zbl 0832.76012
[21] Kiselev, A., Nazarov, F.: A variation on a theme of Caffarelli and Vasseur. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI)370(Kraevye Zadachi Matematicheskoi Fiziki i Smezhnye Voprosy Teorii Funktsii. 40), 58-72, 220 (2009). doi:10.1007/s10958-010-9842-z · Zbl 1288.35393
[22] Kiselev, A., Nazarov, F., Volberg, A.: Global well-posedness for the critical 2D dissipative quasi-geostrophic equation. Invent. Math. 167(3), 445-453 (2007). doi:10.1007/s00222-006-0020-3 · Zbl 1121.35115
[23] Krylov N.V.: Boundedly inhomogeneous elliptic and parabolic equations in a domain. Izv. Akad. Nauk SSSR Ser. Mat. 47(1), 75-108 (1983)
[24] Pedlosky, J.: Geophysical Fluid Dynamics, 2nd edn. Springer, Berlin, 1987 · Zbl 0713.76005
[25] Resnick, S.G.: Dynamical problems in non-linear advective partial differential equations. ProQuest LLC, Ann Arbor, MI (1995). Thesis (Ph.D.)-The University of Chicago
[26] Serra, J.: Regularity for fully nonlinear nonlocal parabolic equations with rough kernels. 2013, preprint. http://arxiv.org/abs/1401.4521 · Zbl 1327.35170
[27] Serra, J., Ros-Oton, X.: Personal communication. 2013
[28] Silvestre, L.: Eventual regularization for the slightly supercritical quasi-geostrophic equation. Ann. Inst. H. Poincaré Anal. Non Linéaire27(2), 693-704 (2010). doi:10.1016/j.anihpc.2009.11.006 · Zbl 1187.35186
[29] Stampacchia, G.: I problemi di trasmissione per le equazioni di tipo ellittico. Confer. Sem. Mat. Univ. Bari No. 58, 12 (1960) · Zbl 0107.08001
[30] Stein, E.M.: Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, New Jersey, 1993 · Zbl 0821.42001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.