×

zbMATH — the first resource for mathematics

Berglund-Hübsch mirror symmetry via vertex algebras. (English) Zbl 1317.17032
Summary: We give a vertex algebra proof of the Berglund-Hübsch duality of nondegenerate invertible potentials. We suggest a way to unify it with the Batyrev-Borisov duality of reflexive Gorenstein cones.

MSC:
17B69 Vertex operators; vertex operator algebras and related structures
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Batyrev, V., Variations of the mixed Hodge structure of affine hypersurfaces in algebraic tori, Duke Math. J., 69, 349-409, (1993) · Zbl 0812.14035
[2] Batyrev, V., Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Alg. Geom., 3, 493-535, (1994) · Zbl 0829.14023
[3] Batyrev, V., Nill, B.: Combinatorial aspects of mirror symmetry. Integer points in polyhedra. In: Geometry, number theory, representation theory, algebra, optimization, statistics. Contemp. Math., 452, Providence, RI: Amer. Math. Soc., 2008, pp. 35-66 · Zbl 1161.14037
[4] Berglund, P.; Henningson, M., Landau-Ginzburg orbifolds, mirror symmetry and the elliptic genus, Nucl. Phys. B, 433, 311-332, (1995) · Zbl 0899.58068
[5] Berglund, P.; Hübsch, T., A generalized construction of mirror manifolds, Nucl. Phys. B, 393, 377-391, (1993) · Zbl 1245.14039
[6] Borisov, L.: Towards the Mirror Symmetry for Calabi-Yau Complete intersections in Gorenstein Toric Fano Varieties. Preprint, http://arxiv.org/abs/alg-geom/9310001v1, 1993
[7] Borisov, L., Vertex algebras and mirror symmetry, Commun. Math. Phys., 215, 517-557, (2001) · Zbl 0990.17023
[8] Borisov, L., Chiral rings of vertex algebras of mirror symmetry, Math. Z., 248, 567-591, (2004) · Zbl 1067.14034
[9] Borisov, L.; Mavlyutov, A., String cohomology of Calabi-Yau hypersurfaces via mirror symmetry, Adv. Math., 180, 355-390, (2003) · Zbl 1055.14044
[10] Borisov, L.; Libgober, A., Elliptic genera of toric varieties and applications to mirror symmetry, Invent. Math., 140, 453-485, (2000) · Zbl 0958.14033
[11] Candelas, P.; Ossa, X.; Green, P.; Parkes, L., An exactly soluble superconformal theory from a mirror pair of Calabi-Yau manifolds, Phys. Lett. B, 258, 118-126, (1991)
[12] Chiodo, A., Ruan, Y.: LG/CY correspondence: the state space isomorphism. Preprint http://arxiv.org/abs/0908.0908v2 [math.A6], 2010 · Zbl 1245.14038
[13] Cox, D., The homogeneous coordinate ring of a toric variety, J. Alge Geom., 4, 17-50, (1995) · Zbl 0846.14032
[14] Kac, V.: Vertex algebras for beginners. Second edition. University Lecture Series, 10. Providence, RI: Amer. Math. Soc., 1998 · Zbl 0924.17023
[15] Kaufmann, R.: Orbifold Frobenius algebras, cobordisms and monodromies. In: Orbifolds in mathematics and physics (Madison, WI, 2001), Contemp. Math., 310, Providence, RI: Amer. Math. Soc., 2002, pp. 135-162 · Zbl 0899.58068
[16] Kaufmann, R., Orbifolding Frobenius algebras, Internat. J. Math., 14, 573-617, (2003) · Zbl 1083.57037
[17] Kaufmann, R.: Singularities with symmetries, orbifold Frobenius algebras and mirror symmetry. In: Gromov-Witten theory of spin curves and orbifolds, Contemp. Math., 403, Providence, RI: Amer. Math. Soc., 2006, pp. 67-116 · Zbl 1116.14037
[18] Krawitz, M.: FJRW rings and Landau-Ginzburg Mirror Symmetry. Preprint http://arxiv.org/abs/0906.0796v1 [math.A6], 2009 · Zbl 1017.52007
[19] Kreuzer, M.; Skarke, H., On the classification of quasihomogeneous functions, Commun. Math. Phys., 150, 137-147, (1992) · Zbl 0767.57019
[20] Kreuzer, M.; Skarke, H., Complete classification of reflexive polyhedra in four dimensions, Adv. Theor. Math. Phys., 4, 1209-1230, (2000) · Zbl 1017.52007
[21] Lerche, W.; Vafa, C.; Warner, N.P., Chiral rings in \(n\) = 2 superconformal theories, Nucl. Phys. B, 324, 427-474, (1989)
[22] Malikov, F.; Schechtman, V.; Vaintrob, A., Chiral de Rham complex, Commun. Math. Phys., 204, 439-473, (1999) · Zbl 0952.14013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.