zbMATH — the first resource for mathematics

On the use of lattice Boltzmann model for simulating dean flow of non-Newtonian fluids in curved square ducts. (English) Zbl 1316.76004
Summary: In the present work, the effect of a fluid’s shear-thinning and extension-hardening behavior is investigated on its flow characteristics in a typical curved square duct using a three-dimensional 27-velocities (D3Q27) incompressible lattice Boltzmann model. The main objective of the work is to examine how a fluid’s non-Newtonian viscous behavior affects the onset of Dean instability (i.e., the sudden shift from a two-cell to a four-cell vortex structure) in a curved square duct. The fluid of interest is assumed to obey Pinho’s rheological model in which shear-thinning and extension-hardening are both represented by a single power-law equation. It is found that shear-thinning has a stabilizing effect on the flow. On the other hand, extension-hardening is found to destabilize the flow.
76A05 Non-Newtonian fluids
76M28 Particle methods and lattice-gas methods
Full Text: DOI
[1] Peiro, J.; Sherwin, S., Finite difference, finite element, and finite volume methods for spatial differential equations, (), 1-32, [Chapter 8]
[2] Succi, S., The lattice Boltzmann equation, (2001), Oxford Science Publications Oxford
[3] He, X.; Luo, L.-S., Theory of lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation, Phys rev E, 56, 6, 6811-6817, (1997)
[4] Lallemand, P.; Luo, L.-S., Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability, Phys rev E, 61, 6546-6562, (2000)
[5] Sukop, M.C.; Thorne, D.T., Lattice Boltzmann modeling: an introduction for geoscientists and engineers, (2006), Springer Verlag Berlin, Heidelberg, The Netherlands
[6] Chen, S.; Doolen, G.D., Lattice Boltzmann method for fluid flows, Annu rev fluid mech, 30, 329-364, (1998) · Zbl 1398.76180
[7] Succi, S., The lattice Boltzmann equation for fluid dynamics and beyond, (2001), Oxford Science Publications · Zbl 0990.76001
[8] Succi, S.; Benzi, R.; Higuera, F., (), [Reprinted from Physica D 47, 219-1991]
[9] Geller, S.; Krafczyk, M.; Tolke, J.; Turek, S.; Hron, J., Benchmark computations based on lattice-Boltzmann, finite element and finite volume methods for laminar flows, Comput fluids, 35, 888-897, (2006) · Zbl 1177.76313
[10] Hou, S.; Zou, Q.; Chen, S.; Doolen, G.; Cooley, A., Simulation of cavity flow by the lattice Boltzmann method, J comput phys, 118, 329, (1995) · Zbl 0821.76060
[11] Boyd, J.; Buik, M.; Green, S., Analysis of the Casson and carreau-Yasuda non-Newtonian blood models in steady and oscillatory flows using the lattice Boltzmann method, Phys fluids, 19, 093103, (2007) · Zbl 1182.76081
[12] Phillips, T.N.; Roberts, G.W., Lattice Boltzmann models for non-Newtonian flows, J appl math, 76, 790-816, (2011)
[13] Pontrelli, G.; Ubertini, S.; Succi, S., The unstructured lattice Boltzmann method for non-Newtonian flows, J stat mech, 06005, (2009)
[14] Vikhansky, A., Lattice-Boltzmann method for yield-stress liquids, J non-Newton fluid mech, 155, 95-100, (2008) · Zbl 1274.76285
[15] Gabbanelli, S.; Drazer, G.; Koplik, J., Lattice Boltzmann method for non-Newtonian (power-law) fluids, Phys rev E, 72, 046312, (2005)
[16] Sullivan, S.P.; Gladden, L.F.; Johns, M.L., Simulation of power-law fluid flow through porous media using lattice Boltzmann techniques, J non-Newton fluid mech, 133, 91-98, (2006) · Zbl 1195.76391
[17] Yoshino, M.; Hotta, Y.; Hirozane, T.; Endo, M., A numerical method for incompressible non-Newtonian fluid flows based on the lattice Boltzmann method, J non-Newton fluid mech, 147, 69-78, (2007) · Zbl 1195.76333
[18] Tang, G.H.; Li, X.F.; He, Y.L.; Tao, W.Q., Electroosmotic flow of non-Newtonian fluid in microchannels, J non-Newton fluid mech, 157, 133-137, (2009) · Zbl 1274.76379
[19] Ashrafizaadeh, M.; Bakhshaei, H., A comparison of non-Newtonian models for lattice Boltzmann blood flow simulations, Comput math appl, 58, 1045-1054, (2009) · Zbl 1189.76050
[20] Malaspinas, O.; Fietier, N.; Devill, M., Lattice Boltzmann method for the simulation of viscoelastic fluid flows, J non-Newton fluid mech, 165, 1637-1653, (2007) · Zbl 1274.76283
[21] Frank, X.; Li, H.Z., Complex flow around a bubble rising in a non-Newtonian fluid, Phys rev E (stat nonlin soft matter phys), 71, 3, 36309-1-36309-5, (2005)
[22] Derksen, J.J.; Prashant, Simulations of complex flow of thixotropic liquids, J non-Newton fluid mech, 160, 65-75, (2009) · Zbl 1274.76018
[23] Nejat, A.; Abdollahi, V.; Vahidkhah, K., Lattice Boltzmann simulation of non-Newtonian flows past confined cylinders, J non-Newton fluid mech, 166, 689-697, (2011) · Zbl 1282.76037
[24] Masilamani, K.; Ganguly, S.; Feichtinger, C.; Rude, U., Hybrid lattice-Boltzmann and finite-difference simulation of electro-osmotic flow in a microchannel, Fluid dyn res, 43, 1-24, (2011) · Zbl 1317.76066
[25] Ohta, M.; Nakamura, T.; Yoshida, Y.; Matsukuma, Y., Lattice Boltzmann simulations of viscoplastic fluid flows through complex flow channels, J non-Newton fluid mech, 166, 404-412, (2011) · Zbl 1282.76156
[26] Dean, M.A., Fluid motion in curved channel, Proc roy soc ser A, 121, 402-420, (1928) · JFM 54.0894.03
[27] Baylis, J.A., Experiments on laminar flow in curved channels of square section, J fluid mech, 48, 417-422, (1971)
[28] Humphrey, J.A.C.; Taylor, A.M.K.; Whitelaw, J.H., Laminar flow in a square duct of strong curvature, J fluid mech, 83, 509-527, (1977) · Zbl 0367.76026
[29] Hille, P.; Vehrenkamp, R.; Schulz-Dubois, E.O., The development and structure of primary and secondary flow in a curved square duct, J fluid mech, 151, 219-241, (1985)
[30] GhiaK, N.; Sokhey, J.S., Laminar incompressible viscous flow in curved ducts of rectangular cross-section, Trans ASME I: J fluids eng, 99, 640-648, (1977)
[31] Thangam, S.; Hur, N., Laminar secondary flows in curved rectangular ducts, J fluid mech, 217, 421-440, (1990)
[32] Finlay, W.H.; Nandakumar, K., Onset of two-dimensional cellular flow in finite curved channels of large aspect ratio, Phys fluids, A2, 7, 1163-1174, (1997)
[33] Cheng, K.C.; Lin, R.C.; Ou, J.W., Fully developed laminar flow in curved rectangular channels, J fluids eng, 98, 41-48, (1976)
[34] Liao, Q.; Jen, T.C., Numerical simulation of fluid flow and heat transfer in a curved square duct by using the lattice Boltzmann method, Numer heat transfer, part A: appl, 54, 451-480, (2008)
[35] Jones, W.M.; Davies, O.H., The flow of dilute aqueous solutions of macromolecules in various geometries: III. bent pipes and porous materials, J phys D: appl phys, 9, 753-770, (1976)
[36] Fellouah, H.; Castelain, C.; Ould-El-Moctar, A.; Peerhossaini, H., The Dean instability in power-law and Bingham fluids in a curved rectangular duct, J non-Newton fluid mech, 165, 163-173, (2010) · Zbl 1274.76217
[37] Pinho, F.T., A GNF framework for turbulent flow models of drag reducing fluids and proposal for a k-&z.epsiv; type closure, J non-Newton fluid mech, 114, 149-184, (2003) · Zbl 1058.76030
[38] Hedayat, M.M.; Borghei, M.H.; Fakhari, A.; Sadeghy, K., On the use of lattice-Boltzmann model for simulating lid-driven cavity flows of strain-hardening fluids, J soc rheol: Japan, 38, 5, 201-207, (2010)
[39] Papanastasiou, T.C.; Georgiou, G.C.; Alexandrou, A.N., Viscous fluid flow, (2000), CRC Press Boca Raton, USA · Zbl 0946.76001
[40] Bird RB, Armstrong RC, Hassager O. Dynamics of polymeric liquids. vols. 1-2, 2nd ed. Wiley, New York; 1987.
[41] Mohamad, A.A.; Kuzmin, A., A critical evaluation of force term in lattice Boltzmann method, natural convection problem, Int J heat mass transfer, 53, 990-996, (2010) · Zbl 1406.76073
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.