×

A spectral sequence on lattice homology. (English) Zbl 1316.57023

Lattice homology is a combinatorial homology theory that can be computed from the plumbing tree of a plumbed three manifold. In the case of negative definite plumbing tree with at most one bad vertex, it is possible to show that the lattice homology is isomorphic to the Heegaard Floer homology of the three manifold associated to the tree. The main result of this paper is the extension of the isomorphism to any plumbing tree with at most two bad vertices. The key of the proof is the existence of a spectral sequence from the lattice homology of a plumbing tree to the Heegaard Floer homology of the related three manifold. The construction of the spectral sequence starts from the knot Floer homology of the link determined by the plumbing graph and using [C. Manolescu and P. Ozsváth, “Heegaard Floer homology and integer surgeries on links”, preprint 2010, arXiv:1011.1317] goes to the Heegaard Floer homology of the three manifold.

MSC:

57R58 Floer homology
57M27 Invariants of knots and \(3\)-manifolds (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] M. Artin, On isolated rational singularities of surfaces. Amer. J. Math. 88 (1966), 129-136. · Zbl 0142.18602 · doi:10.2307/2373050
[2] J. Greene, A surgery triangle for lattice cohomology. Algebr. Geom. Topol. 13 (2013), 441-451. · Zbl 1280.57028 · doi:10.2140/agt.2013.13.441
[3] C. Manolescu, P. Ozsváth, and S. Sarkar, A combinatorial description of knot Floer homology. Ann. of Math. (2) 169 (2009), 633-660. · Zbl 1179.57022 · doi:10.4007/annals.2009.169.633
[4] C. Manolescu, P. Ozsváth, Z. Szabó, and D. Thurston, On combinatorial link Floer homology. Geom. Topol. 11 (2007), 2339-2412. · Zbl 1155.57030 · doi:10.2140/gt.2007.11.2339
[5] C. Manolescu and P. Ozsváth, Heegaard Floer homology and integer surgeries on links. Preprint 2010.
[6] C. Manolescu, P. Ozsváth, and D. Thurston, Grid diagrams and Heegaard Floer in- variants. Preprint 2009.
[7] A. Némethi, On the Ozsváth-Szabó invariant of negative definite plumbed 3-mani- folds. Geom. Topol. 9 (2005), 991-1042. · Zbl 1138.57301 · doi:10.2140/gt.2005.9.991
[8] A. Némethi, Lattice cohomology of normal surface singularities. Publ. Res. Inst. Math. Sci. 44 (2008), 507-543. · Zbl 1149.14029 · doi:10.2977/prims/1210167336
[9] A. Némethi, Some properties of the lattice cohomology. To appear in the Proceed- ings of the “Geometry Conference” meeting, Yamagata University, Japan, September 2010.
[10] A. Némethi, Two exact sequences for lattice cohomology. In A. Connes, A. Gorokhovsky, M. Lesch, M. Pflaum, and B. Rangipour (eds.), Noncommu- tative geometry and global analysis. Proceedings of the conference in honor of Henri Moscovici held in Bonn, June 29-July 4, 2009. Contemporary Mathematics, 546. American Mathematical Society, Providence, RI, 2011, 249-269. · Zbl 1244.32016
[11] A. Némethi and F. Román, The lattice cohomology of S 3 .K/. In A. Campillo, d G. Cardona, A. Melle-Hernández, W. Veys, and W. A. Zúñiga-Galindo (eds.), Zeta functions in algebra and geometry. Papers from the 2nd International Workshop held at the Universitat de les Illes Balears, Palma de Mallorca, May 3-7, 2010. Contem- porary Mathematics, 566. American Mathematical Society, Providence, RI, and Real Sociedad Matemática Española, Madrid, 2012, 261-292. · Zbl 1270.57046 · doi:10.1090/conm/566/11224
[12] P. Ozsváth, A. Stipsicz, and Z. Szabó, A combinatorial description of the U 2 D 0 version of Heegaard Floer homology. Int. Math. Res. Not. IMRN 2011 (2011), 5412-5448. · Zbl 1248.57010 · doi:10.1093/imrn/rnq182
[13] P. Ozsváth, A. Stipsicz, and Z. Szabó, Combinatorial Heegaard Floer homol- ogy and nice Heegaard diagrams. Adv. Math. 231 (2012), 102-171. · Zbl 1260.57051 · doi:10.1016/j.aim.2012.04.008
[14] P. Ozsváth, A. Stipsicz, and Z. Szabó, Knots in lattice homology. Comment. Math. Helv. 89 (2014), 783-818. · Zbl 1309.57023 · doi:10.4171/CMH/334
[15] P. Ozsváth, A. Stipsicz and Z. Szabó, Knot lattice homology in L -spaces, Preprint 2012.
[16] P. Ozsváth and Z. Szabó, On the Floer homology of plumbed three-manifolds. Geom. Topol. 7 (2003), 185-224. · Zbl 1130.57302 · doi:10.2140/gt.2003.7.185
[17] P. Ozsváth and Z. Szabó, Holomorphic disks and topological invariants for closed three-manifolds. Ann. of Math. (2) 159 (2004), 1027-1158. · Zbl 1073.57009 · doi:10.4007/annals.2004.159.1027
[18] P. Ozsváth and Z. Szabó, Holomorphic disks and three-manifold invariants: prop- erties and applications. Ann. of Math. (2) 159 (2004), 1159-1245. · Zbl 1081.57013 · doi:10.4007/annals.2004.159.1159
[19] P. Ozsváth and Z. Szabó, Holomorphic disks, link invariants and the multi-variable Alexander polynomial. Algebr. Geom. Topol. 8 (2008), 615-692. · Zbl 1144.57011 · doi:10.2140/agt.2008.8.615
[20] P. Ozsváth and Z. Szabó, Knot Floer homology and integer surgeries. Algebr. Geom. Topol. 8 (2008), 101-153. · Zbl 1181.57018 · doi:10.2140/agt.2008.8.101
[21] P. Ozsváth and Z. Szabó, Knot Floer homology and rational surgeries. Algebr. Geom. Topol. 11 (2011), 1-68. · Zbl 1226.57044 · doi:10.2140/agt.2011.11.1
[22] J. Rasmussen, Floer homology and knot complements. Ph. D. thesis. Harvard Uni- versity, Cambridge, MA, 2003.
[23] S. Sarkar and J. Wang, An algorithm for computing some Heegaard Floer homolo- gies. Ann. of Math. (2) 171 (2010), 1213-1236. · Zbl 1228.57017 · doi:10.4007/annals.2010.171.1213
[24] E. Spanier, Algebraic topology. McGraw-Hill, New York etc., 1966. · Zbl 0145.43303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.