×

zbMATH — the first resource for mathematics

Classification of “real” Bloch-bundles: topological quantum systems of type AI. (English) Zbl 1316.57019
The paper is devoted to a classification of systems subject to even time reversal symmetry (+TR), denoted by AI in the Altland - Zirnbauer - Cartan (AZC) classification scheme and containing spinless or integer spin (i.e. bosonic) quantum systems, which are invariant under time inversion. The authors use the specification “real” for systems in class AI. The aim of this work consists in (i) discussions of a classification procedure for “real” vector bundles over a sufficiently general involutive space \((X, \tau)\) based on the analysis of the equivariant structure induced by the involution \(\tau\), and (ii) application of such a classification scheme to the case of topological insulators, considered as special examples of topological quantum systems. It is proposed that in this case a classification exists which is finer than the usual \(K\)-theoretic description capable to take care also of possible effects due to non-stable regime. The main result of the paper is defined by a Theorem on the classification of AI topological quantum systems. The proof of the Theorem is (i) a consequence of the homotopy classification of “real” vector bundles and of the homotopy reduction, (ii) a consequence of a Theorem which fixes the stable range condition for “real” vector bundles, and (iii) a consequence of a Theorem which establishes the cohomological classification for “real” line bundles. The cohomology group that appears in (iii) is equivalent to the Borel cohomology of the space \((X, \tau)\) computed with respect to the local system of coefficients. In order to relate the main Theorem with the theory of condensed matter type electron systems, a proper base space is specified and a time-reversal involution \(\tau\) by introducing free charge systems. Then, the authors provide the link between translation invariant quantum systems (with +TR symmetry) and complex vector bundles (with a “real” structure). Vector bundles over a space \(X\) are completely classified in terms of equivalence classes of homotopic maps. Then, the role of the Brillouin zone for the classification of topological phases is clarified. The application of the main Theorem to the case of free and periodic electron systems leads to the homotopy classification of AI topological insulators and classification of invariants for AI topological insulators in dimension \(d=4\). The authors provide a concrete recipe for the construction of all topologically non-trivial systems of type AI. This construction bases on a family of standard prototype models, which are ubiquitous in the literature on topological insulators. It is proved that these models are sufficient to realize all nonequivalent topological phases of type AI in \(d=4\). Then, an effective computational procedure is described for determination of the associated invariants based on the notion of Brouwer degree of maps. The developed classification procedure bases on the use of the proper characteristic classes (so-called, equivalent Chern classes or mixed Chern classes). These classes are elements of an equivalent cohomology theory (Borel cohomology). The authors prove that first Chern classes classify completely “real” vector bundles up to \(d=4\). Moreover, explicit computations are given for the related Borel cohomology groups.

MSC:
57R22 Topology of vector bundles and fiber bundles
55N25 Homology with local coefficients, equivariant cohomology
53C80 Applications of global differential geometry to the sciences
19L64 Geometric applications of topological \(K\)-theory
55R25 Sphere bundles and vector bundles in algebraic topology
82B10 Quantum equilibrium statistical mechanics (general)
82D20 Statistical mechanical studies of solids
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Schnyder, A. P.; Ryu, S.; Furusaki, A.; Ludwig, A. W.W., Classification of topological insulators and superconductors in three spatial dimensions, Phys. Rev. B, 78, 195125, (2008)
[2] Kitaev, A., Periodic table for topological insulators and superconductors, AIP Conf. Proc., 1134, 22-30, (2009) · Zbl 1180.82221
[3] Ryu, S.; Schnyder, A. P.; Furusaki, A.; Ludwig, A. W.W., Topological insulators and superconductors: tenfold way and dimensional hierarchy, New J. Phys., 12, 065010, (2010)
[4] Hasan, M. Z.; Kane, C. L., Colloquium: topological insulators, Rev. Modern Phys., 82, 3045-3067, (2010)
[5] Altland, A.; Zirnbauer, M., Non-standard symmetry classes in mesoscopic normal-superconducting hybrid structures, Phys. Rev. B, 55, 1142-1161, (1997)
[6] Thouless, D. J.; Kohmoto, M.; Nightingale, M. P.; den Nijs, M., Quantized Hall conductance in a two-dimensional periodic potential, Phys. Rev. Lett., 49, 405-408, (1982)
[7] Bellissard, J.; van Elst, A.; Schulz-Baldes, H., The non-commutative geometry of the quantum Hall effect, J. Math. Phys., 35, 5373-5451, (1994) · Zbl 0824.46086
[8] Vaisman, I., Exotic characteristic classes of quaternionic bundles, Israel J. Math., 69, 46-58, (1990) · Zbl 0713.57015
[9] G. De Nittis, K. Gomi, Classification of “Quaternionic” Bloch-bundles: Topological quantum systems of type AII, E-print arXiv:1404.5804 (2014).
[10] Kuchment, P., Floquet theory for partial differential equations, (1993), Birkhäuser Boston · Zbl 0789.35002
[11] Panati, G., Triviality of Bloch and Bloch-Dirac bundles, Ann. Henri Poincaré, 8, 995-1011, (2007) · Zbl 1375.81102
[12] De Nittis, G.; Lein, M., Exponentially localized Wannier functions in periodic zero flux magnetic fields, J. Math. Phys., 52, 112103, (2011) · Zbl 1272.82036
[13] Kato, T., Perturbation theory of linear operators, (1995), Springer Berlin
[14] Freed, D. S.; Moore, G. W., Twisted equivariant matter, Ann. Henri Poincaré, 14, 1927-2023, (2013) · Zbl 1286.81109
[15] Gracia-Bondia, J. M.; Varilly, J. C.; Figueroa, H., Elements of noncommutative geometry, (2001), Birkhäuser Boston · Zbl 0958.46039
[16] Peterson, F. P., Some remarks on Chern classes, Ann. of Math., 69, 414-420, (1959) · Zbl 0123.16502
[17] Bott, R.; Tu, L. W., Differential forms in algebraic topology, (1982), Springer Berlin · Zbl 0496.55001
[18] Woodward, L. M., The classification of orientable vector bundles over CW-complexes of small dimension, Proc. Roy. Soc. Edinburgh, 92A, 175-179, (1982) · Zbl 0505.55017
[19] Čadek, M.; Vanžura, J., On the classification of oriented vector bundles over 5-complexes, Czechoslovak Math. J., 43, 753-764, (1993) · Zbl 0883.55014
[20] Böhm, A.; Mostafazadeh, A.; Koizumi, H.; Niu, Q.; Zwanziger, J., The geometric phase in quantum systems, (2003), Springer-Verlag Berlin · Zbl 1039.81003
[21] Atiyah, M. F., \(K\)-theory and reality, Quart. J. Math. Oxford Ser. (2), 17, 367-386, (1966) · Zbl 0146.19101
[22] Edelson, A. L., Real vector bundles and spaces with free involutions, Trans. Amer. Math. Soc., 157, 179-188, (1971) · Zbl 0217.49001
[23] Kahn, B., Construction de classes de Chern équivariantes pour un fibré vectoriel Réel, Comm. Algebra., 15, 695-711, (1987) · Zbl 0615.57012
[24] Krasnov, V. A., Characteristic classes of vector bundles on a real algebraic variety, Math. USSR Izv., 39, 703-730, (1992) · Zbl 0783.14037
[25] Budich, J. C.; Trauzettel, B., From the adiabatic theorem of quantum mechanics to topological states of matter, Phys. Status Solidi RRL, 7, 109-129, (2013)
[26] Karoubi, M., \(K\)-theory. an introduction, (1978), Springer-Verlag New York · Zbl 0382.55002
[27] Panati, G.; Spohn, H.; Teufel, S., Effective dynamics for Bloch electrons: Peierls substitution and beyond, Comm. Math. Phys., 242, 547-578, (2003) · Zbl 1058.81020
[28] Joannopoulos, J. D.; Johnson, S. G.; Winn, J. N.; Meade, R. D., Photonic crystals: molding the flow of light, (2008), Princeton University Press Princeton · Zbl 1144.78303
[29] Kohmoto, M.; Halperin, B. I.; Wu, Y.-S., Diophantine equation for the 3D quantum Hall effect, Phys. Rev. B, 45, 13488, (1992)
[30] Koshino, M.; Aoki, H.; Halperin, B. I., Wrapping current versus bulk integer quantum Hall effect in three dimensions, Phys. Rev. B, 66, 081301, (2002)
[31] Bernevig, B. A.; Hughes, T. L.; Raghu, S.; Arovas, D. P., Theory of the three-dimensional quantum Hall effect in graphite, Phys. Rev. Lett., 99, 146804, (2007)
[32] Qi, X.-L.; Hughes, T. L.; Zhang, S.-C., Topological field theory of time-reversal invariant insulators, Phys. Rev. B, 78, 195424, (2008)
[33] Essin, A. M.; Moore, J. E.; Vanderbilt, D., Magnetoelectric polarizability and axion electrodynamics in crystalline insulators, Phys. Rev. Lett., 102, 146805, (2009)
[34] Hughes, T. L.; Prodan, E.; Bernevig, B. A., Inversion-symmetric topological insulators, Phys. Rev. B, 83, 245132, (2011)
[35] Atiyah, M. F., \(K\)-theory, (1967), W. A. Benjamin New York
[36] Husemoller, D., Fibre bundles, (1994), Springer-Verlag New York
[37] Milnor, J.; Stasheff, J. D., Characteristic classes, (1974), Princeton University Press · Zbl 0298.57008
[38] Kervaire, M. A., Some nonstable homotopy groups of Lie groups, Illinois J. Math., 4, 161-169, (1960) · Zbl 0105.35302
[39] Griffiths, P.; Harris, J., Principles of algebraic geometry, (1978), Wiley New York · Zbl 0408.14001
[40] Bredon, G. E., (Sheaf Theory, (1997), Springer Berlin) · Zbl 0874.55001
[41] Hatcher, A., Algebraic topology, (2002), Cambridge University Press Cambridge · Zbl 1044.55001
[42] Adem, A.; Leida, J.; Ruan, Y., Orbifolds and stringy topology, (2007), Cambridge University Press Cambridge · Zbl 1157.57001
[43] Adem, A.; Duman, A. N.; Gómez, J. M., Cohomology of toroidal orbifold quotients, J. Algebra, 344, 114-136, (2011) · Zbl 1241.57043
[44] Easther, R.; Greene, B. R.; Jackson, M. G., Cosmological string gas on orbifolds, Phys. Rev. D, 66, 023502, (2002)
[45] Scorpan, A., The wild world of 4-manifolds, (2005), AMS Providence · Zbl 1075.57001
[46] Luke, G.; Mishchenko, A. S., Vector bundles and their applications, (1998), Kluwer Academic Publishers · Zbl 0907.55002
[47] Atiyah, M. F.; Bott, R., On the periodicity theorem for complex vector bundles, Acta Math., 112, 229-247, (1964) · Zbl 0131.38201
[48] tom Dieck, T., (Transformation Groups, Studies in Mathematics, vol. 8, (1987), Walter de Gruyter Berlin) · Zbl 0611.57002
[49] Nagata, M.; Nishida, G.; Toda, H., Segal-Becker theorem for KR-theory, J. Math. Soc. Japan, 34, 15-33, (1982) · Zbl 0466.55004
[50] K. Gomi, A variant of K-theory and topological T-duality for Real circle bundles, Comm. Math. Phys. (2013) in press. E-print arXiv:1310.8446. · Zbl 1320.19001
[51] Allday, C.; Puppe, V., Cohomological methods in transformation groups, (1993), Cambridge University Press Cambridge · Zbl 0799.55001
[52] Matumoto, T., On \(G\)-CW complexes and a theorem of J. H. C. Whitehead, J. Fac. Sci. Univ. Tokyo, 18, 363-374, (1971) · Zbl 0232.57031
[53] Pitsch, W.; Scherer, J., Conjugation spaces and equivariant Chern classes, Bull. Belg. Math. Soc. Simon Stevin, 20, 77-90, (2013) · Zbl 1278.57034
[54] Borel, A., (Seminar on transformation groups, with contributions by G. Bredon, E.E. Floyd, D. Montgomery, R. Palais, Annals of Mathematics Studies, vol. 46, (1960), Princeton University Press Princeton)
[55] Hsiang, W. Y., Cohomology theory of topological transformation groups, (1975), Springer-Verlag Berlin
[56] Davis, J. F.; Kirk, P., Lecture notes in algebraic topology, (2001), AMS Providence · Zbl 1018.55001
[57] Edelson, A. L., Real line bundles on spheres, Proc. Amer. Math. Soc., 27, 579-583, (1971) · Zbl 0207.53504
[58] Jahren, B.; Kwasik, S., Free involutions on \(S^1 \times S^n\), Math. Ann., 351, 281-303, (2011) · Zbl 1229.57031
[59] Helffer, B.; Sjöstrand, J., Équation de Schrödinger avec champ magnétique et équation de harper, (Schrödinger operators, Lecture Notes in Physics, vol. 345, (1989), Springer Berlin), 118-197 · Zbl 0699.35189
[60] Frankel, T., The geometry of physics: an introduction, (1997), Cambridge University Press Cambridge · Zbl 0888.58077
[61] Segal, G., Equivariant \(K\)-theory, Publ. Math. Inst. Hautes Études Sci., 34, 129-151, (1968) · Zbl 0199.26202
[62] K. Shiozaki, M. Sato, Topology of crystalline insulators and superconductors. E-print arXiv:1403.3331 (2014).
[63] Guillemin, V.; Ginzburg, V. L.; Karshon, Y., Moment maps, cobordisms, and Hamiltonian group actions, (2002), AMS Providence · Zbl 1197.53002
[64] C. Doran, S. Mendez-Diez, J. Rosenberg, T-duality For Orientifolds and Twisted KR-theory. E-print arXiv:1306.1779 (2013). · Zbl 1304.19004
[65] Hori, K., D-branes, T duality, and index theory, Adv. Theor. Math. Phys., 3, 281-342, (1999) · Zbl 0964.81057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.