×

zbMATH — the first resource for mathematics

Random currents and continuity of Ising model’s spontaneous magnetization. (English) Zbl 1315.82004
The authors consider the ferromagnetic Ising model on the transitive graph \(\mathbb Z^d\) and prove that the spontaneous magnetization vanish at the critical temperature if the coupling constants \((J_{x,y})_{x,y\in \mathbb Z^d}\) satisfy the conditions \[ J_{x,y}=J_{0,y-x}, J_{x,y}\geq 0,\, \sum_{x\in \mathbb Z^d}J_{0,x}<\infty, \] and for any \( x\in \mathbb Z^d,\) there exist \(0=x_0,x_1,\dots,x_{m-1}\), \(x_m=x\) such that \[ J_{x_0,x_1}J_{x_1,x_2}\cdots J_{x_{m-1},x_m}>0. \]

MSC:
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
82D40 Statistical mechanical studies of magnetic materials
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Aizenman, M.; Barsky, D.J.; Fernández, R., The phase transition in a general class of Ising-type models is sharp, J. Stat. Phys., 47, 343-374, (1987)
[2] Aizenman, M.; Chayes, J.T.; Chayes, L.; Newman, C.M., Discontinuity of the magnetization in one-dimensional \({1/|x-y|^2}\) Ising and Potts models, J. Stat. Phys., 50, 1-40, (1988) · Zbl 1084.82514
[3] Aizenman, M.; Fernández, R., On the critical behavior of the magnetization in high-dimensional Ising models, J. Stat. Phys., 44, 393-454, (1986) · Zbl 0629.60106
[4] Aizenman, M.; Graham, R., On the renormalized coupling constant and the susceptibility in \({φ^{4}_{4}}\) field theory and the Ising model in four dimensions, Nucl. Phys. B, 225, 261-288, (1983)
[5] Aizenman, M., Geometric analysis of \({φ^4}\) fields and Ising models, Commun. Math. Phys., 86, 1-48, (1982) · Zbl 0533.58034
[6] Baxter, R.J., Potts model at the critical temperature, J. Phys. C Solid State Phys., 6, l445, (1973)
[7] Biskup, M.; Chayes, L.; Crawford, N., Mean-field driven first-order phase transitions in systems with long-range interactions, J. Stat. Phys., 122, 1139-1193, (2006) · Zbl 1142.82329
[8] Biskup M.: Reflection positivity and phase transitions in lattice spin models. In: Methods of Contemporary Mathematical Statistical Physics, pp. 1-86. Springer, New York (2009) · Zbl 1180.82041
[9] Burton, R.M.; Keane, M., Density and uniqueness in percolation, Commun. Math. Phys., 121, 501-505, (1989) · Zbl 0662.60113
[10] Bodineau, T., Translation invariant Gibbs states for the Ising model, Probab. Theory Relat. Fields, 135, 153-168, (2006) · Zbl 1206.82015
[11] Chen, L.-C., Sakai, A.: Critical two-point functions for long-range statistical-mechanical models in high dimensions. To appear in Ann. Probab. (arXiv:1204.1180) · Zbl 1342.60162
[12] Duminil-Copin, H.: Parafermionic observables and their applications to planar statistical physics models, Ensaios Matematicos, vol. 25. Brazilian Mathematical Society (2013) · Zbl 1298.82001
[13] Duminil-Copin, H.; Hongler, C.; Nolin, P., Connection probabilities and RSW-type bounds for the two-dimensional FK Ising model, Commun. Pure. Appl. Math., 64, 1165-1198, (2011) · Zbl 1227.82015
[14] Duminil-Copin, H., Sidoravicius, V., Tassion, V.: Continuity of the phase transition for planar Potts models with \({1≤ q≤ 4}\) . Preprint, 50 pages (2013) · Zbl 1357.82011
[15] Dobrushin, R.L., Prescribing a system of random variables by the help of conditional distributions, Probab. Theory Appl., 15, 469-497, (1970) · Zbl 0264.60037
[16] Dyson, F.J., Existence of a phase-transition in a one-dimensional Ising ferromagnet, Commun. Math. Phys., 12, 91-107, (1969) · Zbl 1306.47082
[17] Fröhlich, J.; Israel, R.; Lieb, E.H.; Simon, B., Phase transitions and reflection positivity. I. general theory and long range lattice models, Commun. Math. Phys., 62, 1-34, (1978)
[18] Fisher, M.E., Critical temperatures of anisotropic Ising lattices, II general upper bounds, Phys. Rev., 162, 480, (1967)
[19] Fortuin, C.M.; Kasteleyn, P.W.; Ginibre, J., Correlation inequalities on some partially ordered sets, Commun. Math. Phys., 22, 89-103, (1971) · Zbl 0346.06011
[20] Fröhlich, J.; Simon, B.; Spencer, T., Infrared bounds, phase transitions and continuous symmetry breaking, Commun. Math. Phys., 50, 79-95, (1976)
[21] Georgii H.O.: Gibbs measures and phase transitions, 2nd edn. In: de Gruyter Studies in Mathematics, vol. 9. Walter de Gruyter & Co, Berlin (2011) · Zbl 1225.60001
[22] Griffiths, R.B.; Hurst, C.A.; Sherman, S., Concavity of magnetization of an Ising ferromagnet in a positive magnetic field, J. Math. Phys., 11, 790, (1970)
[23] Glimm, J.; Jaffe, A., \({ϕ^4_2}\) quantum field model in the single-phase region: differentiability of the mass and bounds on critical exponents, Phys. Rev. D, 10, 536, (1974)
[24] Griffiths, R.B., Correlations in Ising ferromagnets. I, J. Math. Phys., 8, 478, (1967)
[25] Griffiths, R.B., Correlations in Ising ferromagnets. II. external magnetic fields, J. Math. Phys., 8, 484, (1967)
[26] Grimmett G.R.: The random-cluster model, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Math. Sciences], vol. 333. Springer, Berlin (2006)
[27] Heydenreich, M.; Hofstad, R.; Sakai, A., Mean-field behavior for long- and finite range Ising model, percolation and self-avoiding walk, J. Stat. Phys., 132, 1001-1049, (2008) · Zbl 1152.82007
[28] Kaufman, B., Crystal statistics. II. partition function evaluated by spinor analysis, Phys. Rev., 76, 1232, (1949) · Zbl 0035.42801
[29] Kaufman, B.; Onsager, L., Crystal statistics. III. short-range order in a binary Ising lattice, Phys. Rev., 76, 1244, (1949) · Zbl 0035.42802
[30] Kotecký, R.; Shlosman, S.B., First-order phase transitions in large entropy lattice models, Commun. Math. Phys., 83, 493-515, (1982)
[31] Lebowitz, J.L., More inequalities for Ising ferromagnets, Phys. Rev. B, 5, 2538-2540, (1972)
[32] Lebowitz, J., Coexistence of phases in Ising ferromagnets, J. Stat. Phys., 16, 463-476, (1977)
[33] Lenz, W., Beitrag zum verständnis der magnetischen eigenschaften in festen körpern, Phys. Zeitschr., 21, 613-615, (1920)
[34] Lebowitz, J.L.; Martin-Löf, A., On the uniqueness of the equilibrium state for Ising spin systems, Commun. Math. Phys., 25, 276-282, (1972)
[35] Laanait, L.; Messager, A.; Ruiz, J., Phases coexistence and surface tensions for the Potts model, Commun. Math. Phys., 105, 527-545, (1986)
[36] Lee, T.D.; Yang, C.N., Statistical theory of equations of state and phase transitions. II. lattice gas and Ising model, Phys. Rev., 87, 410-419, (1952) · Zbl 0048.43401
[37] Messager, A.; Miracle-Sole, S., Correlation functions and boundary conditions in the Ising ferromagnet, J. Stat. Phys., 17, 245-262, (1977)
[38] Onsager, L., Crystal statistics. I. A two-dimensional model with an order-disorder transition, Phys. Rev., 65, 117, (1944) · Zbl 0060.46001
[39] Peierls, R., On ising’s model of ferromagnetism, Math. Proc. Camb. Philos. Soc., 32, 477-481, (1936) · Zbl 0014.33604
[40] Sakai, A., Lace expansion for the Ising model, Commun. Math. Phys., 272, 283-344, (2007) · Zbl 1133.82007
[41] Schrader, R., New correlation inequalities for the Ising model and \(P\)(ϕ) theories, Phys. Rev. B (3), 15, 2798-2803, (1977)
[42] Slade, G.: The lace expansion and its applications. Lecture Notes in Mathematics, vol. 1879, Springer, Berlin (2006). (Lectures from the 34th Summer School on Probability Theory held in Saint-Flour, July 6-24, 2004, Edited and with a foreword by Jean Picard.) · Zbl 0014.33604
[43] Smirnova-Nagnibeda, T.; Pak, I., On non-uniqueness of percolation in nonamenable Cayley graphs, Comptes Rendus Acad. Sci. (Paris) Sér I, 330, 1-6, (2000) · Zbl 0947.43003
[44] Thouless, D.J., Long-range order in one-dimensional Ising systems, Phys. Rev., 187, 732-733, (1969)
[45] Werner, W.: Percolation et modèle d’Ising, Cours Spécialisés [Specialized Courses], vol. 16. Société Mathématique de France, Paris (2009)
[46] Yang, C.N., The spontaneous magnetization of a two-dimensional Ising model, Phys. Rev., 85, 808-816, (1952) · Zbl 0046.45304
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.