×

zbMATH — the first resource for mathematics

The skew-normal distribution on the simplex. (English) Zbl 1315.60023
Summary: Density functions on the simplex defined with respect to the Lebesgue measure can change from unimodality to multimodality with perturbation. This phenomenon is induced by the incompatibility of the Aitchison geometry and the Lebesgue measure. A Lebesgue-type measure, compatible with the algebraic geometric structure of the simplex, is used here to define the skew-normal density on the simplex as the Radon-Nykodym derivative with respect to it. Similarities and differences between the densities obtained using the different measures are analyzed.

MSC:
60E05 Probability distributions: general theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aitchison J., J Roy. Statist. Soc. B 44 pp 139– (1982)
[2] Aitchison J., The Statistical Analysis of Compositional Data (1986) · Zbl 0688.62004
[3] Aitchison , J. ( 1997 ). The one-hour course in compositional data analysis or compositional data analysis is simple . In: Pawlowsky-Glahn , V. , ed. In: Proceedings of IAMG’97 – The Third Annual Conference of the International Association of Mathematical Geology . Vol. I, II , and addendum, (CIMNE) , Barcelona , pp. 3 – 35 .
[4] DOI: 10.1023/B:MATG.0000002983.12476.89 · Zbl 1031.62051 · doi:10.1023/B:MATG.0000002983.12476.89
[5] DOI: 10.1093/biomet/83.4.715 · Zbl 0885.62062 · doi:10.1093/biomet/83.4.715
[6] DOI: 10.1111/1467-9868.00194 · Zbl 0924.62050 · doi:10.1111/1467-9868.00194
[7] Barceló-Vidal , C. ( 1996 ). Mixturas de Datos Composicionales . Ph. D. thesis , Universitat Politècnica de Catalunya , Barcelona .
[8] DOI: 10.1198/016214501753381850 · Zbl 1073.62573 · doi:10.1198/016214501753381850
[9] Eaton M. L., Multivariate Statistics. A Vector Space Approach (1983)
[10] DOI: 10.1007/s11004-005-7381-9 · Zbl 1177.86018 · doi:10.1007/s11004-005-7381-9
[11] DOI: 10.1023/A:1023818214614 · Zbl 1302.86024 · doi:10.1023/A:1023818214614
[12] Martín-Fernández J. A., Advances in Data Science and Classification pp 49– (1998)
[13] Martín-Fernández , J. A. , Bren , M. , Barceló-Vidal , C. , Pawlowsky-Glahn , V. ( 1999 ). A measure of difference for compositional data based on measures of divergence . In: Lippard , S. J. , Næss , A. , Sinding-Larsen , R. , eds. In: Proceedings of IAMG’99 – The Fifth Annual Conference of the International Association of Mathematical Geology . Vol. I and II , Tapir , Trondheim , pp. 211 – 216 .
[14] Mateu-Figueras , G.(2003).Models de Distribució Sobre el Símplex. Ph.D. thesis:Universitat Politècnica de Catalunya , Barcelona.
[15] DOI: 10.1007/s00477-004-0225-1 · doi:10.1007/s00477-004-0225-1
[16] DOI: 10.1080/03610920601126217 · Zbl 1124.62031 · doi:10.1080/03610920601126217
[17] Pawlowsky-Glahn V., Compositional Data Analysis Workshop – CoDaWork’03, Proceedings (2003) · Zbl 1109.86300
[18] DOI: 10.1007/s004770100077 · Zbl 0987.62001 · doi:10.1007/s004770100077
[19] DOI: 10.1023/A:1014890722372 · Zbl 1031.86007 · doi:10.1023/A:1014890722372
[20] Pearson K., Proc. Roy. Soc. London, LX pp 489– (1897)
[21] DOI: 10.1080/02664760050120542 · Zbl 1076.62514 · doi:10.1080/02664760050120542
[22] DOI: 10.1023/A:1023835513705 · doi:10.1023/A:1023835513705
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.