zbMATH — the first resource for mathematics

Laurent polynomials, GKZ-hypergeometric systems and mixed Hodge modules. (English) Zbl 1315.14016
A GKZ-hypergeometric system is a holonomic \(\mathcal D\)-module determined by an integral matrix \(A\) and a parameter vector \(\beta\). For homogeneous non-resonant systems Gelfand, Kapranov and Zelevinsky [I. M. Gelfand et al., Adv. Math. 84, No. 2, 255–271 (1990; Zbl 0741.33011)] showed that the solution complex is isomorphic to a direct image of a local system, defined on the complement of the graph of an associated family of Laurent polynomials. In this paper for resonant but not strongly-resonant parameters a tight relation is established between certain direct sums of GKZ-systems and Gauss-Manin systems of associated families of Laurent polynomials. The results carry over to the category of mixed Hodge modules. It is shown that a homogeneous GKZ-system with non strongly-resonant, integer parameter vector \(\beta\) carries a mixed Hodge module structure. For rational \(\beta\) the GKZ-system is a direct summand in a mixed Hodge module, showing that the underlying perverse sheaf has quasi-unipotent local monodromy.

14D07 Variation of Hodge structures (algebro-geometric aspects)
32S35 Mixed Hodge theory of singular varieties (complex-analytic aspects)
32S40 Monodromy; relations with differential equations and \(D\)-modules (complex-analytic aspects)
32G34 Moduli and deformations for ordinary differential equations (e.g., Knizhnik-Zamolodchikov equation)
33C70 Other hypergeometric functions and integrals in several variables
Full Text: DOI arXiv
[1] doi:10.1007/s00208-006-0067-x · Zbl 1126.33006 · doi:10.1007/s00208-006-0067-x
[2] doi:10.1215/S0012-7094-94-07313-4 · Zbl 0804.33013 · doi:10.1215/S0012-7094-94-07313-4
[3] doi:10.1215/00127094-2008-011 · Zbl 1144.13012 · doi:10.1215/00127094-2008-011
[6] doi:10.2748/tmj/1176734751 · Zbl 1162.13305 · doi:10.2748/tmj/1176734751
[7] doi:10.1007/978-0-8176-4523-6 · doi:10.1007/978-0-8176-4523-6
[8] doi:10.1023/A:1011877515447 · Zbl 1075.33009 · doi:10.1023/A:1011877515447
[10] doi:10.2977/prims/1195171082 · Zbl 0727.14004 · doi:10.2977/prims/1195171082
[11] doi:10.1016/0001-8708(90)90048-R · Zbl 0741.33011 · doi:10.1016/0001-8708(90)90048-R
[12] doi:10.1016/S0001-8708(03)00011-2 · Zbl 1051.32008 · doi:10.1016/S0001-8708(03)00011-2
[16] doi:10.1090/S0894-0347-05-00488-1 · Zbl 1095.13033 · doi:10.1090/S0894-0347-05-00488-1
[19] doi:10.1215/S0012-7094-93-06917-7 · Zbl 0812.14035 · doi:10.1215/S0012-7094-93-06917-7
[20] doi:10.1090/S0002-9939-2011-11073-6 · Zbl 1257.14016 · doi:10.1090/S0002-9939-2011-11073-6
[21] doi:10.1016/j.jalgebra.2008.09.010 · Zbl 1181.13023 · doi:10.1016/j.jalgebra.2008.09.010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.