zbMATH — the first resource for mathematics

Bayesian spatio-temporal random coefficient time series (BaST-RCTS) model of infectious disease. (English) Zbl 1314.92173
Summary: This paper proposes a new method, using Bayesian approach, to analyze time series data of infectious diseases which have both temporal and spatial variational structures. Standard ways to model heteroscedastic time series are the ARCH-type models. However, from an empirical standpoint, there is a need to include spatial effect into time series analysis to make allowance for confounder and ecological biases. On the basis of random coefficient autoregressive model, our model takes account of spatial correlated/uncorrelated heterogeneity. To assure the applicability of our model, we set up hypothesis framework before analyzing. It was proved that our model could provide the first two conditional moments of ARCH-type models. The empirical study of bacillary dysentery data also illustrated that our model could make accurate and precise approximations.
92D30 Epidemiology
62F15 Bayesian inference
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
BayesDA; FinTS; MLwiN; SAS
Full Text: DOI
[1] Sumi, A.; Kamo, K., MEM spectral analysis for predicting influenza epidemics in Japan, Environ. Health Prev. Med., 17, 2, 98-108, (2011)
[2] Mugglin, A. S.; Cressie, N.; Gemmell, I., Hierarchical statistical modelling of influenza epidemic dynamics in space and time, Stat. Med., 21, 18, 2703-2721, (2002)
[3] Anderson, R. M.; May, R., Infectious Disease of Humans: Dynamics and Control, (1991), Oxford University Press London
[4] Engle, R. F.; Russell, J. R., Autoregressive conditional duration: a new model for irregularly spaced transaction data, Econometrica, 66, 5, 1127-1162, (1998) · Zbl 1055.62571
[5] Zhang, M. Y.; Russell, J. R.; Tsay, R. S., A nonlinear autoregressive conditional duration model with applications to financial transaction data, J. Econ., 104, 179-207, (2001) · Zbl 1108.62336
[6] Zhang, T.; Yang, M.; Xiao, X.; Feng, Z.; Li, C.; Zhou, Z.; Ren, Q.; Li, X., Spectral analysis based on fast Fourier transformation (FFT) of surveillance data: the case of scarlet fever in China, Epidemiol. Infect., 142, 3, 520-529, (2014)
[7] Zhang, X.; Liu, Y.; Yang, M.; Zhang, T.; Young, A. A.; Li, X., Comparative study of four time series methods in forecasting typhoid fever incidence in China, PLoS One, 8, 5, 1e63116, (2013)
[8] Engle, R. F., Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation, Econometrica, 50, 4, 987-1007, (1982) · Zbl 0491.62099
[9] Nelson, D. B., Conditional heteroskedasticity in asset returns: a new approach, Econometrica, 59, 347-370, (1991) · Zbl 0722.62069
[10] Bollerslev, T., Generalized autoregressive conditional heteroskedasticity, J. Econ., 31, 307-327, (1986) · Zbl 0616.62119
[11] Ferland, R. L.A.; Oraichi, D., Integer-valued GARCH process, J. Time Ser. Anal., 27, 6, 923-942, (2006) · Zbl 1150.62046
[12] Piyal, B. A.R.; Ocaktan, E.; Yozgatligil, C., An analysis of the prevalence of malaria in Turkey over the last 85 years, Pathogens Global Health, 107, 1, 30-35, (2013)
[13] Jones, S. A.; Joy, M. P.; Pearson, J., Forecasting demand of emergency care, Health Care Manag. Sci., 5, 4, 297-305, (2002)
[14] Kenneth, J.; Rothman, S. G.; Timothy, L. L., Modern Epidemiology, (2008), Lippincott Williams & Wilkins
[15] Lawson, A. B., Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology, (2008), Chapman & Hall/CRC New York
[16] Clayton, D. G.; Bernardinelli, L.; Montomoli, C., Spatial correlation in ecological analysis, Int. J. Epidemiol., 22, 1193-1202, (1993)
[17] Gelman, A., Multilevel (hierarchical) modeling: what it can and can’t do, Technometrics, 48, 3, 432-435, (2006)
[18] Rosel, J. O.J.; Jara, P.; Caballer, A., A multilevel time-series model for the incidence of AIDS cases in Spain, Health Place, 6, 4, 309-317, (2000)
[19] Ye, Y.; Kerr, W. C., Alcohol and liver cirrhosis mortality in the united states: comparison of methods for the analyses of time-series panel data models, Alcohol., Clin. Exp. Res., 35, 1, 108-115, (2011)
[20] Nicholls, D. F.; Quinn, B. G., Random coefficient autoregressive models: an introduction, Lecture Notes in Statistics, (1982), Springer-Verlag New York · Zbl 0497.62081
[21] Nicholls, D. F.; Quinn, B. G., The estimation of autoregressive models with random coefficients I, J. Time Ser. Anal., 1, 37-46, (1980) · Zbl 0495.62083
[22] J.N. Katz, Random Coefficient models for time-series-cross-section data, No. 1205, Working Papers from California Institute of Technology, Division of the Humanities and Social Sciences, 2004.
[23] Gelman, A.; Carlin, J. B.; Stern, H. S.; Rubin, D. B., Bayesian Data Analysis, (1995), Chapman & Hall London
[24] Boris Shor, J. B.; Keele, L.; Park, D., A Bayesian multilevel modeling approach to time-series cross-sectional data, Pol. Anal., 15, 2, 165-181, (2007)
[25] Hof, P. D., A First Course in Bayesian Statistical Methods, (2009), Springer New York
[26] Alonso, W. J.; Viboud, C.; Simonsen, L., Seasonality of influenza in Brazil: a traveling wave from the amazon to the subtropics, Am. J. Epidemiol., 165, 12, 1434-1442, (2007)
[27] Tiao, G. C.; Box, G. E.P., Modeling multiple time series with applications, J. Am. Stat. Assoc., 83, 1097-1107, (1981) · Zbl 0483.62074
[28] Lawson, A. B.; Browne, W. J.; Rodeiro, C. L.V., Disease Mapping with WinBUGS and MLwiN, (2003), John Wiley & Sons
[29] Moran, P. A.P., Notes on continuous stochastic phenomena, Biometrika, 37, 1, 17-23, (1950) · Zbl 0041.45702
[30] Anselin, L., Local indicators of spatial association-LISA, Geogr. Anal., 27, 2, 93-115, (1995)
[31] Gelman, A., Prior distributions for variance parameters in hierarchical models, Bayesian Anal., 1, 3, 515-534, (2006) · Zbl 1331.62139
[32] Spiegelhalter, D. J.; Best, N. G.; Carlin, B. P.; Van Der Linde, A., Bayesian measures of model complexity and fit (with discussion), J. R. Statist. Soc. B, 64, 583-640, (2002) · Zbl 1067.62010
[33] SAS Institute, SAS/ETS(R) 9.1 User’s Guide[M], SAS Institute Inc, Cary, NC, USA, 2004.
[34] Benjamini, Y.; Hochberg, Y., Controlling the false discovery rate: a practical and powerful approach to multiple testing[J], J. R. Stat. Soc. Ser. B (Methodol.), 57, 1, 289-300, (1995) · Zbl 0809.62014
[35] Box, G.; Jenkins, G.; Reinsel, G., Time series analysis: forecasting and control[M], (2013), John Wiley & Sons
[36] Shumway, R. H., Time Series Analysis and its Applications with R Examples, (2006), Springer Press New York · Zbl 1096.62088
[37] Tsay, R. S., Analysis of Financial Time Series, (2005), Wiley & Sons, Inc. Hoboken, NJ · Zbl 1086.91054
[38] Uhma, D.; Kimb, J.-M.; Jung, Y.-S., Large asymmetry and directional dependence by using copula modeling to currency exchange rates, Model Assist. Stat. Appl., 7, 327-340, (2012)
[39] Hr̎dle, W.; Hafner, C. M., Discrete time option pricing with flexible volatility estimation, Finance Stochast., 4, 189-207, (2000) · Zbl 0951.91027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.