×

zbMATH — the first resource for mathematics

Runge-Kutta discontinuous Galerkin methods with WENO limiter for the special relativistic hydrodynamics. (English) Zbl 1314.76035
Summary: This paper develops the \(P^K\)-based Runge-Kutta discontinuous Galerkin (RKDG) methods with WENO limiter for the one- and two-dimensional special relativistic hydrodynamics, \(K=1,2,3\), which is an extension of the work [J. Qiu and C.-W. Shu, SIAM J. Sci. Comput. 26, No. 3, 907–929 (2005; Zbl 1077.65109)]. The WENO limiter for the RKDG method is adaptively implemented via two following steps: the “troubled” cells are first identified by using a TVB modified minmod function, and then a new polynomial solution inside the “troubled” cells is locally reconstructed to replace the RKDG solution by using the WENO technique based on the cell average values of the RKDG solution in the neighboring cells as well as the original cell averages of the “troubled” cells. Several test problems in one and two dimensions are computed using the developed RKDG methods with WENO limiter. The computations demonstrate that our methods are stable, accurate, and robust in maintaining accuracy for simulating flows in the special relativistic hydrodynamics.

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
76Y05 Quantum hydrodynamics and relativistic hydrodynamics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
Software:
WHAM
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Balsara, D. S., Riemann solver for relativistic hydrodynamics, J. Comput. Phys., 114, 284-297, (1994) · Zbl 0810.76062
[2] Biswas, R.; Devine, K.; Flaherty, J. E., Parallel adaptive finite element methods for conservation laws, Appl. Numer. Math., 14, 255-284, (1994) · Zbl 0826.65084
[3] Burbeau, A.; Sagaut, P.; Bruneau, C. H., A problem-independent limiter for high-order runge – kutta discontinuous Galerkin methods, J. Comput. Phys., 169, 111-150, (2001) · Zbl 0979.65081
[4] Cockburn, B., Discontinuous Galerkin methods for convection-dominated problems, (Earth, T. J.; Deconinck, H., High-order Methods for Computational Physics, Lecture Notes in Computational Science and Engineering, vol. 9, (1999), Springer), 69-224 · Zbl 0937.76049
[5] Cockburn, B.; Karniadakis, G.; Shu, C.-W., The development of discontinuous Galerkin methods, (Cockburn, B.; Karniadakis, G.; Shu, C.-W., Discontinuous Galerkin Methods: Theory, Computation and Applications, Lecture Notes in Computational Science and Engineering, vol. 11, (2000), Springer), 3-50 · Zbl 0989.76045
[6] Cockburn, B.; Lin, S.-Y.; Shu, C.-W., TVB runge – kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems, J. Comput. Phys., 84, 90-113, (1989) · Zbl 0677.65093
[7] Cockburn, B.; Hou, S.; Shu, C.-W., The runge – kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case, Math. Comput., 54, 545-581, (1990) · Zbl 0695.65066
[8] Cockburn, B.; Shu, C.-W., The runge – kutta local projection P1-discontinuous Galerkin method for scalar conservation laws, RAIRO Modél. Math. Anal. Numér., 25, 337-361, (1991) · Zbl 0732.65094
[9] Cockburn, B.; Shu, C.-W., TVB runge – kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework, Math. Comput., 52, 411-435, (1989) · Zbl 0662.65083
[10] Cockburn, B.; Shu, C.-W., The runge – kutta discontinuous Galerkin method for conservation laws V: multidimensional systems, J. Comput. Phys., 141, 199-224, (1998) · Zbl 0920.65059
[11] Cockburn, B.; Shu, C.-W., Runge – kutta discontinuous Galerkin method for convection-dominated problems, J. Sci. Comput., 16, 173-261, (2001) · Zbl 1065.76135
[12] Dai, W.; Woodward, P. R., An iterative Riemann solver for relativistic hydrodynamics, SIAM J. Sci. Statist. Comput., 18, 982-995, (1997) · Zbl 0892.35008
[13] Dolezal, A.; Wong, S. S.M., Relativistic hydrodynamics and essentially non-oscillatory shock capturing schemes, J. Comput. Phys., 120, 266-277, (1995) · Zbl 0840.76047
[14] Donat, R.; Font, J. A.; Ibáñez, J. M.; Marquina, A., A flux-split algorithm applied to relativistic flows, J. Comput. Phys., 146, 58-81, (1998) · Zbl 0930.76054
[15] Duncan, G. C.; Hughes, P. A., Simulations of relativistic extragalactic jets, Astrophys. J., 436, L119-L122, (1994)
[16] Eulderink, F.; Mellema, G., General relativistic hydrodynamics with a roe solver, Astron. Astrophys. Suppl., 110, 587-623, (1995)
[17] Falle, S. A.E. G.; Komissarov, S. S., An upwind numerical scheme for relativistic hydrodynamics with a general equation of state, Mon. Not. R. Astron. Soc., 278, 586-602, (1996)
[18] Harten, A.; Lax, P.; van Leer, B., On upstream differencing and Godunov type methods for hyperbolic conservation laws, SIAM Rev., 25, 35-61, (1983) · Zbl 0565.65051
[19] P. He, Numerical simulations of relativistic hydrodynamics and relativistic magnetohydrodynamics, Doctoral Dissertation, Peking University, 2011.
[20] He, P.; Tang, H. Z., An adaptive moving mesh method for two-dimensional relativistic hydrodynamics, Commun. Comput. Phys., 11, 114-146, (2012) · Zbl 1373.76354
[21] He, P.; Tang, H. Z., An adaptive moving mesh method for two-dimensional relativistic magnetohydrodynamics, Comput. Fluids, 60, 1-20, (2012) · Zbl 1365.76337
[22] Ji, X.; Tang, H. Z., High-order accurate runge – kutta (local) discontinuous Galerkin methods for one- and two-dimensional fractional diffusion equations, Numer. Math. Theor. Methods Appl., 5, 333-358, (2012) · Zbl 1274.65271
[23] Krivodonova, L., Limiters for high-order discontinuous Galerkin methods, J. Comput. Phys., 226, 879-896, (2007) · Zbl 1125.65091
[24] Kunik, M.; Qamar, S.; Warnecke, G., Kinetic schemes for the relativistic gas dynamics, Numer. Math., 97, 159-191, (2004) · Zbl 1098.76056
[25] Landau, L. D.; Lifshitz, E. M., Fluid mechanics, (1987), Pergaman Press
[26] Martı´, J. M.; Müller, E., The analytical solution of the Riemann problem in relativistic hydrodynamics, J. Fluid Mech., 258, 317-333, (1994) · Zbl 0806.76098
[27] Martı´, J. M.; Müller, E., Extension of the piecewise parabolic method to one-dimensional relativistic hydrodynamics, J. Comput. Phys., 123, 1-14, (1996) · Zbl 0839.76056
[28] Martí, J. M.; Müller, E., Numerical hydrodynamics in special relativity, Living Rev. Relativ., 6, 7, (2003) · Zbl 1068.83502
[29] Mignone, A.; Bodo, G., An HLLC Riemann solver for relativistic flows, I: hydrodynamics, Mon. Not. R. Astron. Soc., 364, 126-136, (2005)
[30] Mignone, A.; Plewa, T.; Bodo, G., The piecewise parabolic method for multidimensional relativistic fluid dynamics, Astrophys. J. Suppl., 160, 199-219, (2005)
[31] Misner, C. W.; Thorne, K. S.; Wheeler, J. A., Gravitation, (1973), W.H. Freeman and Company
[32] Qamar, S.; Warnecke, G., A high-order kinetic flux-splitting method for the relativistic magnetohydrodynamics, J. Comput. Phys., 205, 182-204, (2005) · Zbl 1087.76090
[33] Qiu, J. X.; Shu, C. W., Runge – kutta discontinuous Galerkin method using WENO limiters, SIAM J. Sci. Comput., 26, 907-929, (2005) · Zbl 1077.65109
[34] Qiu, J. X.; Shu, C. W., A comparison of troubled-cell indictors for runge – kutta discontinuous Galerkin method using weighted essentially nonoscillatory limiters, SIAM J. Sci. Comput., 27, 995-1013, (2005) · Zbl 1092.65084
[35] Radice, D.; Rezzolla, L., Discontinuous Galerkin methods for general-relativistic hydrodynamics: formulation and application to spherically symmetric spacetimes, Phys. Rev. D, 84, 024010, (2011)
[36] W.H. Reed, T.R. Hill, Triangular mesh methods for neutron transport equation, Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory, 1973.
[37] Remade, J. F.; Flaherty, J. E.; Shephard, M. S., An adaptive discontinuous Galerkin technique with an orthogonal basis applied to compressible flow problems, SIAM Rev., 45, 53-72, (2003) · Zbl 1127.65323
[38] Schneider, V.; Katscher, U.; Rischke, D. H.; Waldhauser, B.; Maruhn, J. A.; Munz, C. D., New algorithms for ultra-relativistic numerical hydrodynamics, J. Comput. Phys., 105, 92-107, (1993) · Zbl 0779.76062
[39] Shao, S. H.; Tang, H. Z., Higher-order accurate runge – kutta discontinuous Galerkin methods for a nonlinear Dirac model, Discrete Contin. Dyn. Syst. Ser. B, 6, 623-640, (2006) · Zbl 1113.65095
[40] Shu, C.-W., High order weighted essentially nonoscillatory schemes for convection dominated problems, SIAM Rev., 51, 82-126, (2009) · Zbl 1160.65330
[41] Shu, C.-W., Total-variation-diminishing time discretizations, SIAM J. Sci. Statist. Comput., 9, 1073-1084, (1988) · Zbl 0662.65081
[42] Tang, H. Z.; Warnecke, G., A runge – kutta discontinuous Galerkin method for the Euler equations, Comput. Fluids, 34, 375-398, (2005) · Zbl 1098.76044
[43] Tchekhovskoy, A.; McKinney, J. C.; Narayan, R., WHAM: a WENO-based general relativistic numerical scheme, I: hydrodynamics, Mon. Not. R. Astron. Soc., 379, 469-497, (2007)
[44] Wilson, J. R., Numerical study of fluid flow in a Kerr space, Astrophys. J., 173, 431-438, (1972)
[45] Wilson, J. R.; Mathews, G. J., Relativistic numerical hydrodynamics, (2003), Cambridge University Press · Zbl 1095.83003
[46] Xu, Y.; Shu, C.-W., Local discontinuous Galerkin methods for high-order time-dependent partial differential equations, Commun. Comput. Phys., 7, 1-46, (2010) · Zbl 1364.65205
[47] Yang, J. Y.; Chen, M. H.; Tsai, I. N.; Chang, J. W., A kinetic beam scheme for relativistic gas dynamics, J. Comput. Phys., 136, 19-40, (1997) · Zbl 0889.76053
[48] Yang, Z. C.; He, P.; Tang, H. Z., A direct Eulerian GRP scheme for relativistic hydrodynamics: one-dimensional case, J. Comput. Phys., 230, 7964-7987, (2011) · Zbl 1408.76597
[49] Yang, Z. C.; Tang, H. Z., A direct Eulerian GRP scheme for relativistic hydrodynamics: two-dimensional case, J. Comput. Phys., 231, 2116-2139, (2012) · Zbl 1408.76598
[50] Zanna, L. D.; Bucciantini, N., An efficient shock-capturing central-type scheme for multidimensional relativistic flows, I: hydrodynamics, Astron. Astrophys., 390, 1177-1186, (2002) · Zbl 1209.76022
[51] J. Zhao, P. He, H.Z. Tang, Steger-warming flux vector splitting method for special relativistic hydrodynamics, Math. Methods Appl. Sci., submitted for publication, 2012. · Zbl 1298.35161
[52] Zhong, X.; Shu, C.-W., A simple weighted essentially nonoscillatory limiter for runge – kutta discontinuous Galerkin methods, J. Comput. Phys., 232, 397-415, (2013)
[53] Zhu, J.; Qiu, J. X., Runge – kutta discontinuous Galerkin method using WENO type limiters: three dimensional unstructured meshes, Commun. Comput. Phys., 11, 985-1005, (2012) · Zbl 1373.76112
[54] Zhu, J.; Qiu, J. X.; Shu, C.-W.; Dumbser, M., Runge – kutta discontinuous Galerkin method using WENO limiters II: unstructured meshes, J. Comput. Phys., 227, 4330-4353, (2008) · Zbl 1157.65453
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.