×

A kind of new algebraic Rossby solitary waves generated by periodic external source. (English) Zbl 1314.76019

Summary: In the article, by employing multiple-scale, perturbation method, a new model is derived to describe the algebraic Rossby solitary waves generated by periodic external source in stratified fluid. The local conservation laws and analytic solutions of the model are obtained, and the breakup properties are discussed. By numeric simulation, some problems on the generation and evolution of the algebraic solitary waves under the influence of periodic external source are theoretically investigated. The results show that besides the solitary waves, an additional harmonic wave appears in the region of the external source forcing. Furthermore, the periodic variation of the external source forcing can prevent solitary waves from breaking. Meanwhile, the detuning parameter has an important effect on the breakup of the algebraic Rossby solitary waves.

MSC:

76B25 Solitary waves for incompressible inviscid fluids
35Q53 KdV equations (Korteweg-de Vries equations)
35B20 Perturbations in context of PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Russell, J.S.: Repeat on waves. Tech. Rep. Brit. Assoc. Adv. Sci. 41 (1837) · Zbl 0362.76055
[2] Yusry, O.E.D.: Nonlinear wave-wave interaction and stability criterion for parametrically coupled nonlinear Schr \[\ddot{o}\] o¨dinger equations. Nonlinear Dyn. 24, 399 (2001) · Zbl 0976.35079
[3] Anjan, B.: Solitary waves for power-law regularized long-wave equation and \[R(m, n)\] R(m,n) equation. Nonlinear Dyn. 59, 423 (2010) · Zbl 1183.76649
[4] Xu, Z.H., Yin, B.S., Hou, Y.J.: Response of internal solitary waves to tropical storm Washi in the northwestern South China Sea. Ann. Geophys. 29, 2181 (2011)
[5] Krishnan, E.V., Kumar, S., Anjan, B.: Solitons and other nonlinear waves of the Boussinesq equation. Nonlinear Dyn. 70, 1213 (2012) · Zbl 1268.35023
[6] Long, R.R.: Solitary waves in the westerlies. J. Atmos. Sci. 21, 197 (1964)
[7] Redekopp, L.G.: On the theory of solitary Rossby waves. J. Fluid Mech. 82, 725 (1977) · Zbl 0362.76055
[8] Yang, L.G., Da, C.J., Song, J., et al.: Rossby waves with linear topography in barotropic fluids. Chin. J. Ocean. Limnol. 26, 334 (2008)
[9] Wadati, M.: The modified Korteweg-de Vries equation. J. Phys. Soc. Jpn. 34, 1289 (1973) · Zbl 1334.35299
[10] Meng, L., Lv, K.L.: Influence of dissipation on interaction of solitary wave with localized topography. Chin. J. Comput. Phys. 19, 349 (2002)
[11] Song, J., Yang, L.G.: Modified KdV equation for solitary waves with \[\beta\] β effect ini barotropic fluids. Chin. Phys. B 18, 2873 (2009)
[12] Yang, H.W., Yin, B.S., Dong, H.H., et al.: Generation of solitary Rossby waves by unstable topography. Commun. Theor. Phys. 57, 473 (2012) · Zbl 1247.76022
[13] Meng, L., Lv, K.L.: Nonlinear long wave disturbances excited by localized forcing. Chin. J. Comput. Phys. 17, 259 (2000)
[14] Yang, H.W., Yin, B.S., Shi, Y.L.: Forced dissipative Boussinesq equation for solitary waves excited by unstable topography. Nonlinear Dyn. 70, 1389 (2012)
[15] Ono, H.: Algebraic Rossby wave soliton. J. Phys. Soc. Jpn. 50, 2757 (1981)
[16] Luo, D.H.: On the Benjamin-Ono equation and its generalization in the atmosphere. Sci China B 32, 1233 ((1989))
[17] Benjamin, T.B.: A new kind of solitary wave. J. Fluid Mech. 245, 401 (1992) · Zbl 0779.76013
[18] Yang, H.W., Yin, B.S., Dong, H.H., et al.: Algebraic Rossby solitary waves excited by non-stationary external source. Commun. Theor. Phys. 58, 425 (2012) · Zbl 1264.76030
[19] Kubota, T., Ko, D.R.S., Dobbs, L.D.: Weakly-nonlinear, long internal gravity waves in stratified fluids of finite depth. J. Hydrol. 12, 157 (1978)
[20] Luo, D.H.: Algebraic solitary Rossby wave in the atmosphere. Acta Meteorol. Sin. 49, 269-277 (1991)
[21] Yang, H.W., Yin, B.S., Zhong, B., et al.: Rossby solitary waves generated by wavy bottom in stratified fluids. Adv. Mech. Eng. 2013, 1 (2013)
[22] Zuniga, A.E.: Application of jacobian elliptic functions to the analysis of the steady-state solution of the damped duffing equation with driving force of flliptic type. Nonlinear Dyn. 42, 175 (2005) · Zbl 1094.70014
[23] Kordyukova, S.A.: Approximate group analysis and multiple time scales method for the approximate Boussinesq equation. Nonlinear Dyn. 46, 73 (2006) · Zbl 1170.76313
[24] Zhang, S.: Exact solutions of a KdV equation with variable coefficients via Exp-function method. Nonlinear Dyn. 52, 11 (2008) · Zbl 1173.35670
[25] Ma, W.X., Li, C.X., He, J.S.: A second Wronskian formulation of the Boussinesq equation. Nonliear Anal. Theory. Methods Appl. 70, 4245 (2009) · Zbl 1159.37425
[26] Ma, W.X., Pekcan, A.: Uniqueness of Kadomtsev-Petviashvili and Boussinesq equations. Zeit. für. Nat. A 66, 377 (2011)
[27] Zhang, Y.L., Zhu, S.P.: Subcritical transcritical and supcirtical flows over a step. J. Fluid Mech. 333, 255 (1997) · Zbl 0912.76006
[28] Lane-serff, G.F.: Topographic and boundary effects on steady and unsteady flow through straits. Deep-Sea Res. II 51, 321 (2004)
[29] Kao, T.W., Pao, H.P., Renourd, D.: Internal solitons on the pycnocline: generation, propagation and shoaling on breaking over a slope. J. Fluid Mech. 159, 19 (1985)
[30] Wu, Z.R., Cheng, Y.L., Wang, S.L.: Numerical study on effect of waving bed on the surface wave. J. Hydrol. B 18, 464 (2006) · Zbl 1203.76032
[31] Zhang, D.H., Chwang, A.T.: Generation of solitary waves by forward and backward step bottom forcing. J. Fluid Mech. 432, 341 (2001) · Zbl 0992.76019
[32] Fornberg, B.: A Practical Guide to Pseudo-Spectral Method. Cambridge University Press, Cambridge (1996) · Zbl 0844.65084
[33] Pedlosky, J.: Geophysical Fluid Dynamics. Springer, New York (1979) · Zbl 0429.76001
[34] Ono, H.: Algebraic solitary waves in stratified fluids. J. Phys. Soc. Jpn. 39, 1082 (1975) · Zbl 1334.76027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.