×

Finite integral transform method in static problems for inhomogeneous plates. (English. Russian original) Zbl 1314.65158

Int. Appl. Mech. 50, No. 6, 651-663 (2014); translation from Prikl. Mekh., Kiev 50, No. 6, 55-68 (2014).
Summary: A new modification of the finite integral transform method for solving two-dimensional linear boundary-value problems of general form is proposed. This method involves construction of two integral transformations over different variables of the domain such that the kernel of one of them is the transform (map) of the other and vice versa. The method is tested by solving bending problems for homogeneous and inhomogeneous plates

MSC:

65R10 Numerical methods for integral transforms
74K20 Plates
74S30 Other numerical methods in solid mechanics (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ya. M. Grigorenko, A. T. Vasilenko, et. al., Numerical Solution of Boundary-Value Problems of the Statics of Orthotropic Shells with Variable Parameters [in Russian], Naukova Dumka, Kyiv (1975).
[2] N. S. Koshlyakov, E. B. Gliner, and M. M. Smirnov, Differential Equations of Mathematical Physics, North-Holland, Amsterdam; Interscience (Wiley), New York (1964). · Zbl 0115.30701
[3] Yu. E. Senitskii, Studying the Elastic Deformation of Structural Members under Dynamic Loads with the Finite Integral Transform Method [in Russian], Izd. Saratov. Univ., Saratov (1985).
[4] Yu. E. Senitskii, “Finite integral transform method: Generalization of the classical procedure of expansion into series of vector eigenfunctions,” Izv. Saratov. Univ., Ser. Mat. Mekh. Inform., No. 3 (1), 61-89 (2011). · Zbl 1227.35017
[5] E. I. Bespalova and A. B. Kitaygorodskii, “Advanced Kantorovich’s method for biharmonic problems,” J. Eng. Math., 46, 213-226 (2003). · Zbl 1052.74061 · doi:10.1023/A:1025090525280
[6] F. V. Chang, “Bending of uniformly loaded cantilever rectangular plates,” Appl. Math. Mech., 1, 371-383 (1980). · Zbl 0605.73109 · doi:10.1007/BF01876742
[7] F. V. Chang, “Bending of a cantilever rectangular plate loaded discontinuously,” Appl. Math. Mech., 2, 403-410 (1981). · Zbl 0621.73056 · doi:10.1007/BF01877396
[8] V. I. Fabrikant, “Application of generalized images method to contact problems for a transversely isotropic elastic layer on a smooth half-space,” Arch. Appl. Mech., 81, No. 7, 957-974 (2011). · Zbl 1271.74358 · doi:10.1007/s00419-010-0448-1
[9] E. A. Gasymov, “Application of the finite integral transform method to solving a mixed problem with integrodifferential conditions for a nonclassical equation,” Diff. Eqs, 47, No. 3, 319-332 (2011). · Zbl 1227.35017 · doi:10.1134/S0012266111030037
[10] A. Ya. Grigorenko, O. V. Vovkodav, and S. N. Yaremchenko, “Stress-strain state of nonthin orthotropic spherical shells of variable thickness,” Int. Appl. Mech., 48, No. 1, 80-93 (2012). · Zbl 1295.74060 · doi:10.1007/s10778-012-0507-0
[11] Ya. M. Grigorenko and S. N. Yaremchenko, “Refined design of longitudinally corrugated cylindrical shells,” Int. Appl. Mech., 48, No. 2, 205-211 (2012). · Zbl 1295.74061 · doi:10.1007/s10778-012-0516-z
[12] A. Ya. Grigorenko, A. S. Bergulev, and S. N. Yaremchenko, “Numerical solution of bending problems for rectangular plates,” Int. Appl. Mech., 49, No. 1, 81-94 (2013). · doi:10.1007/s10778-013-0554-1
[13] R. Li. Yong Zhong, B.Tian, and J. Du, “Exact bending solutions of orthotropic cantilever thin plates subjected to arbitrary loads,” Int. Appl. Mech., 47, No. 1, 107-119 (2011). · Zbl 1272.74404 · doi:10.1007/s10778-011-0448-z
[14] Yu. E. Senitskii, “The dynamic problem of electroelasticity for a non-homogeneous cylinder,” Appl. Math. Mech., 57, No. 1, 133-139 (1993). · doi:10.1016/0021-8928(93)90107-W
[15] Yu. E. Senitskii, “Dynamics of inhomogeneous non-shallow spherical shells,” Mech. Solids, 37, No. 6, 123-133 (2002).
[16] I. N. Sneddon,“ <Emphasis Type=”Italic”>Fourier Transforms, McGraw-Hill Book Company Inc., New York (1951). · Zbl 0038.26801
[17] S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, McGraw-Hill Book Company Inc., New York (1959). · Zbl 0114.40801
[18] C. I. Tranter, Integral Transforms in Mathematical Physics, Wiley, New York (1951). · Zbl 0044.10702
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.