×

Factor copula models for item response data. (English) Zbl 1314.62276

Summary: Factor or conditional independence models based on copulas are proposed for multivariate discrete data such as item responses. The factor copula models have interpretations of latent maxima/minima (in comparison with latent means) and can lead to more probability in the joint upper or lower tail compared with factor models based on the discretized multivariate normal distribution (or multidimensional normal ogive model). Details on maximum likelihood estimation of parameters for the factor copula model are given, as well as analysis of the behavior of the log-likelihood. Our general methodology is illustrated with several item response data sets, and it is shown that there is a substantial improvement on existing models both conceptually and in fit to data.

MSC:

62P15 Applications of statistics to psychology
62H20 Measures of association (correlation, canonical correlation, etc.)
62H25 Factor analysis and principal components; correspondence analysis

Software:

QRM; ltm
PDF BibTeX XML Cite
Full Text: DOI Link

References:

[1] Aas, K.; Czado, C.; Frigessi, A.; Bakken, H., Pair-copula constructions of multiple dependence, Insurance: Mathematics and Economics, 44, 182-198, (2009) · Zbl 1165.60009
[2] Bartholomew, D., Knott, M., & Moustaki, I. (2011). Latent variable models and factor analysis: a unified approach (3rd ed.). New York: Wiley. · Zbl 1266.62040
[3] Braeken, J.; Tuerlinckx, F.; Boeck, P., Copula functions for residual dependency, Psychometrika, 72, 393-411, (2007) · Zbl 1286.62101
[4] Braeken, J., A boundary mixture approach to violations of conditional independence, Psychometrika, 76, 57-76, (2011) · Zbl 1208.62182
[5] Brechmann, E.C.; Czado, C.; Aas, K., Truncated regular vines in high dimensions with applications to financial data, Canadian Journal of Statistics, 40, 68-85, (2012) · Zbl 1274.62381
[6] Chang, E.; D’Zurilla, T.; Maydeu-Olivares, A., Assessing the dimensionality of optimism and pessimism using a multimeasure approach, Cognitive Therapy and Research, 18, 143-160, (1994)
[7] Menezes, L.M., On Fitting latent class models for binary data: the estimation of standard errors, British Journal of Mathematical and Statistical Psychology, 52, 149-168, (1999)
[8] Genest, C.; MacKay, J., The joy of copulas: bivariate distributions with uniform marginals, The American Statistician, 40, 280-283, (1986)
[9] Gibbons, R.; Hedeker, D., Full-information item bi-factor analysis, Psychometrika, 57, 423-436, (1992) · Zbl 0760.62097
[10] Hull, J.; White, A., Valuation of a CDO and an \(n\)th to default CDS without Monte Carlo simulation, Journal of Derivatives, 12, 8-23, (2004)
[11] Hult, H.; Lindskog, F., Multivariate extremes, aggregation and dependence in elliptical distributions, Advances in Applied Probability, 34, 587-608, (2002) · Zbl 1023.60021
[12] Joe, H. (1997). Multivariate models and dependence concepts. London: Chapman & Hall. · Zbl 0990.62517
[13] Joe, H., Asymptotic efficiency of the two-stage estimation method for copula-based models, Journal of Multivariate Analysis, 94, 401-419, (2005) · Zbl 1066.62061
[14] Jöreskog, K.G.; Moustaki, I., Factor analysis of ordinal variables: a comparison of three approaches, Multivariate Behavioral Research, 36, 347-387, (2001)
[15] Kaiser, H.F., The varimax criterion for analytic rotation in factor analysis, Psychometrika, 23, 187-200, (1958) · Zbl 0095.33603
[16] Krupskii, P.; Joe, H., Factor copula models for multivariate data, Journal of Multivariate Analysis, 120, 85-101, (2013) · Zbl 1280.62070
[17] Kurowicka, D., & Joe, H. (2011). Dependence modeling: vine copula handbook. Singapore: World Scientific.
[18] Lehmann, E.L. (1998). Elements of large sample theory. New York: Springer.
[19] Maydeu-Olivares, A., Limited information estimation and testing of discretised multivariate normal structural models, Psychometrika, 71, 57-77, (2006) · Zbl 1306.62476
[20] Maydeu-Olivares, A.; Joe, H., Limited information goodness-of-fit testing in multidimensional contingency tables, Psychometrika, 71, 713-732, (2006) · Zbl 1306.62477
[21] McDonald, R.P.; Linden, W.J. (ed.); Hambleton, R.K. (ed.), Normal ogive multidimensional model, 257-269, (1997), New York
[22] McNeil, A.J., Frey, R., & Embrechts, P. (2005). Quantitative risk management: concepts, techniques and tools. Princeton: Princeton University Press. · Zbl 1089.91037
[23] Muthén, B., Contributions to factor analysis of dichotomous variables, Psychometrika, 43, 551-560, (1978) · Zbl 0394.62042
[24] Olsson, F., Maximum likelihood estimation of the polychoric correlation coefficient, Psychometrika, 44, 443-460, (1979) · Zbl 0428.62083
[25] Panagiotelis, A.; Czado, C.; Joe, H., Pair copula constructions for multivariate discrete data, Journal of the American Statistical Association, 107, 1063-1072, (2012) · Zbl 1395.62114
[26] Rizopoulos, D. (2011). ltm: latent trait models under IRT (R package version 0.9-7). · Zbl 1286.62101
[27] Samejima, F. (1969). Calibration of latent ability using a response pattern of graded scores. Psychometrika Monograph Supplement, 17.
[28] Scheier, M.; Carver, C., Optimism, coping, and health: assessment and implications of generalized outcome expectancies, Cognitive Therapy and Research, 4, 219-247, (1985)
[29] Sklar, M. (1959). Fonctions de répartition à \(n\) dimensions et leurs marges. Publications de L’Institut de Statistique de L’Université de Paris, \(8\), 229-231. · Zbl 0100.14202
[30] Stroud, A.H., & Secrest, D. (1966). Gaussian quadrature formulas. Englewood Cliffs: Prentice-Hall. · Zbl 0156.17002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.