×

zbMATH — the first resource for mathematics

Reflexive games and non-Archimedean probabilities. (English) Zbl 1312.91025
Summary: In reflexive games we deal with an unlimited hierarchy of cognitive pictures. Aumann’s understanding of common knowledge satisfies the classical intuition that we can appeal only to inductive sets in our reasoning about these cognitive pictures involved in reflexive games. In this paper I propose to deny this intuition and appeal to non-Archimedean probabilities in defining cognitive pictures of our reflexion. This allows us to define reflexive games of finite or infinite levels.

MSC:
91A44 Games involving topology, set theory, or logic
60A99 Foundations of probability theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R. J. Aumann, ”Agreeing to disagree,” Annals Statist. 4(6), 1236–1239 (1976). · Zbl 0379.62003 · doi:10.1214/aos/1176343654
[2] R. J. Aumann, Notes on Interactive Epistemology. Mimeo (Hebrew Univ. of Jerusalem, Jerusalem, 1989).
[3] J. L. Austin, How to do Things with Words: The William James Lectures Delivered at Harvard University in 1955, eds. J. O. Urmson and Marina Sbisp (Clarendon Press, Oxford, 1962).
[4] A. Brandenburger and H. J. Keisler, ”An impossibility theorem on beliefs in games,” Studia Logica 84(2), 211–240 (2006). · Zbl 1114.03013 · doi:10.1007/s11225-006-9011-z
[5] A. Brandenburger, A. Friedenberg and H. J. Keisler, ”Fixed points in epistemic game theory,” eds. S. Abramsky and M. Mislove, Mathematical Foundations of Information Flow (American Math. Society, 2012). · Zbl 1264.91013
[6] A. Yu. Khrennikov, ”p-Adic quantum mechanics with p-adic valued functions,” J. Math. Phys. 32(4), 932–937 (1991). · Zbl 0746.46067 · doi:10.1063/1.529353
[7] A. Yu. Khrennikov, Non-Archimedian Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models (Kluwer Acad. Publisher, Dordrecht 1997).
[8] A. Yu. Khrennikov, Interpretations of Probability (VSP Int. Sc. Publishers, Utrecht/Tokyo 1999).
[9] A. Yu. Khrennikov, p-Adic Valued Distributions in Mathematical Physics (Kluwer Acad. Publishers, Dordrecht, 1994).
[10] A. Yu. Khrennikov, Information Dynamics in Cognitive, Psychological and Anomalous Phenomena (Kluwer Acad. Publishers, Dordrecht, 2004). · Zbl 1175.91151
[11] A. Yu. Khrennikov, Modeling of Processes of Thinking in p-Adic Coordinates (Nauka, Fizmatlit, Moscow, 2004) [in Russian].
[12] Ch. Knudsen, ”Equilibrium, perfect rationality and the problem of self-reference in economics,” ed. U. Maki, Rationality, Institutions and Economic Methodology (Routledge Chapman & Hall, 1993).
[13] V. A. Lefebvre, ”The basic ideas of reexive game’s logic,” Problems of Systems and Structures Research, pp. 73–79 (1965) [in Russian].
[14] V. A. Lefebvre, Algebra of Conscience (D. Reidel, 1982). · Zbl 1003.03002
[15] V. A. Lefebvre, Lectures on Reflexive Game Theory (Leaf & Oaks, Los Angeles, 2010).
[16] G. J. Mailath and L. Samuelson, Repeated Games and Reputations: Long-Run Relationships (Oxford Univ. Press, 2006).
[17] A. Robinson, Non-Standard Analysis. Studies in Logic and the Foundations of Mathematics (North-Holland, 1966). · Zbl 0151.00803
[18] A. Schumann and A. Yu. Khrennikov, ”Logical approach to p-adic probabilities,” Bull. Sect. Logic 35(1), 49–57 (2006). · Zbl 1133.03327
[19] A. Schumann, ”p-Adic multiple-validity and p-adic valued logical calculi,” J. Multiple-Valued Logic Soft Comp. 13(1–2), 29–60 (2007). · Zbl 1129.03007
[20] A. Schumann, ”Non-Archimedean fuzzy and probability logic,” J. Appl. Non-Class. Logics 18(1), 29–48 (2008). · Zbl 1187.03024 · doi:10.3166/jancl.18.29-48
[21] A. Schumann, ”Non-well-founded probabilities and coinductive probability logic,” in Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC’08), IEEE Comp. Soc. Press 2, 54–57 (2008).
[22] A. Schumann, ”Non-well-founded probabilities on streams,” eds. D. Dubois et al., Soft Methods for Handling Variability and Imprecision, Advan. Soft Comp. 48, 59–65 (2008).
[23] A. Schumann and A. Yu. Khrennikov, ”p-Adic physics, non-well-founded reality and unconventional computing,” p-Adic Numbers Ultram. Anal. Appl. 1(4), 297–306 (2009). · Zbl 1258.81047 · doi:10.1134/S2070046609040037
[24] A. Schumann and A. Yu. Khrennikov, ”Physics beyond the set-theoretic axiom of foundation,” ed. A. Khrennikov, Foundations of Probability and Physics-5, AIP Conf. Proc. 1101, 374–380 (2009). · Zbl 1183.81010
[25] A. Schumann, ”Non-well-founded probabilities within unconventional computing,” 6th International Symposium on Imprecise Probability: Theories and Applications (United Kingdom, Durham, 2009). · Zbl 1258.81047
[26] A. Schumann, ”Non-Archimedean valued extension of logic BL and p-adic valued extension of logic BL,” J. Uncertain Systems 4(2), 99–115 (2010).
[27] J. R. Searle, Speech Acts; an Essay in the Philosophy of Language (Cambridge Univ. Press, 1969).
[28] J. R. Searle, Expression and Meaning: Studies in the Theory of Speech Acts (Cambridge Univ. Press, 1979).
[29] J. R. Searle and D. Vanderveken, Foundations of Illocutionary Logic (Cambridge Univ. Press, 1984). · Zbl 0577.03011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.