zbMATH — the first resource for mathematics

Discretized peridynamics for linear elastic solids. (English) Zbl 1312.74030
Summary: Peridynamics is a theory of continuum mechanics employing a nonlocal model that can simulate fractures and discontinuities. It reformulates continuum mechanics in forms of integral equations rather than partial differential equations to calculate the force on a material point. A connection between bond forces and the stress in the classical (local) theory is established for the calculation of peridynamic stress, which is calculated by summing up bond forces passing through or ending at the cross section of a node. The peridynamic stress and the constitutive law in elasticity are used for the derivation of one- and three-dimensional numerical micromoduli. For three-dimensional discretized peridynamics, the numerical micromodulus is larger than the analytical micromodulus, and converges to the analytical value as the horizon to grid spacing ratio increases. A comparison of material responses in a three-dimensional discretized peridynamic model using numerical and analytical micromoduli, respectively, is performed for different horizons. As the horizon increases, the boundary effect is more conspicuous, and the errors increase in the back-calculated Young’s modulus and strains. For the simulation of materials of Poisson’s ratios other than 1/4, a pairwise compensation scheme for discretized peridynamics is proposed. Compared with classical (local) elasticity solutions, the computational results by applying the proposed scheme show good agreement in the strain, the resultant Young’s modulus and Poisson’s ratio.

74R10 Brittle fracture
74B99 Elastic materials
Full Text: DOI
[1] Askari E, Bobaru F, Lehoucq RB, Parks ML, Silling SA, Weckner O (2008) Peridynamics for multiscale materials modeling. J Phys 125:012–078. IOP Publishing, Tokyo
[2] Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45(5): 601–620 · Zbl 0943.74061 · doi:10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
[3] Bobaru F (2007) Influence of Van der Waals forces on increasing the strength and toughness in dynamic fracture of nanofibre networks: a peridynamic approach. Model Simul Mater Sci Eng 15: 397 · doi:10.1088/0965-0393/15/5/002
[4] Bobaru F, Yang M, Alves LF, Silling SA, Askari E, Xu J (2009) Convergence, adaptive refinement, and scaling in 1D peridynamics. Int J Numer Methods Eng 77(6): 852–877 · Zbl 1156.74399 · doi:10.1002/nme.2439
[5] Dayal K, Bhattacharya K (2006) Kinetics of phase transformations in the peridynamic formulation of continuum mechanics. J Mech Phys Solids 54(9): 1811–1842. doi: 10.1016/j.jmps.2006.04.001 · Zbl 1120.74690 · doi:10.1016/j.jmps.2006.04.001
[6] De S, Hong JW, Bathe KJ (2003) On the method of finite spheres in applications: towards the use with ADINA and in a surgical simulator. Comput Mech 31(1): 27–37 · Zbl 1038.74675 · doi:10.1007/s00466-002-0390-3
[7] Demmie PN, Silling SA (2007) An approach to modeling extreme loading of structures using peridynamics. J Mech Mater Struct 2: 1921–1945 · doi:10.2140/jomms.2007.2.1921
[8] Edelen DGB, Green AE, Laws N (1971) Nonlocal continuum mechanics. Arch Ration Mech Anal 43(1): 36–44 · Zbl 0225.73006
[9] Emmrich E, Weckner O (2006) The peridynamic equation of motion in non-local elasticity theory. In: III European conference on computational mechanics. Solids, structures and coupled problems in engineering, vol 19. Springer, Lisbon
[10] Emmrich E, Weckner O (2007) On the well-posedness of the linear peridynamic model and its convergence towards the Navier equation of linear elasticity. Commun Math Sci 5(4): 851–864 · Zbl 1133.35098 · doi:10.4310/CMS.2007.v5.n4.a6
[11] Ercolessi F (1997) A molecular dynamics primer. Spring College in Computational Physics, ICTP, Trieste, pp 24–25
[12] Foster JT, Silling SA, Chen WW (2009) Viscoplasticity using peridynamics. Int J Numer Methods Eng 81(10): 1242–1258 · Zbl 1183.74035
[13] Foulk JW, Allen DH, Helms KLE (2000) Formulation of a three-dimensional cohesive zone model for application to a finite element algorithm. Comput Methods Appl Mech Eng 183(1–2): 51–66 · Zbl 0992.74067 · doi:10.1016/S0045-7825(99)00211-X
[14] Gerstle W, Sau N, Silling SA (2005) Peridynamic modeling of plain and reinforced concrete structures. In: SMiRT18: 18th Int. conf. struct. mech. react. technol., Beijing
[15] Gerstle W, Sau N, Silling SA (2007) Peridynamic modeling of concrete structures. Nucl Eng Des 237(12–13): 1250–1258 · doi:10.1016/j.nucengdes.2006.10.002
[16] Gils MAJV, van der Sluis O, Zhang GQ, Janssen JHJ, Voncken RMJ (2007) Analysis of Cu/low-k bond pad delamination by using a novel failure index. Microelectron Reliab 47(2–3): 179–186 · doi:10.1016/j.microrel.2006.09.003
[17] Ha YD, Bobaru F (2010) Studies of dynamic crack propagation and crack branching with peridynamics. Int J Fract 162(1–2): 229–244 · Zbl 1425.74416 · doi:10.1007/s10704-010-9442-4
[18] Ha YD, Bobaru F (2011) Characteristics of dynamic brittle fracture captured with peridynamics. Eng Fract Mech 78(6): 1156–1168. doi: 10.1016/j.engfracmech.2010.11.020 · doi:10.1016/j.engfracmech.2010.11.020
[19] Holian BL, Ravelo R (1995) Fracture simulations using large-scale molecular dynamics. Phys Rev B 51(17): 11275–11288. doi: 10.1103/PhysRevB.51.11275 · doi:10.1103/PhysRevB.51.11275
[20] Hong JW, Bathe KJ (2003) On analytical transformations for efficiency improvements in the method of finite spheres. In: Bathe KJ (ed) Comput Fluid Solid Mechanics, vol 1. Elsevier
[21] Hong JW, Bathe KJ (2005) Coupling and enrichment schemes for finite element and finite sphere discretizations. Comput Struct 83(17–18): 1386–1395 · doi:10.1016/j.compstruc.2004.12.002
[22] Kilic B (2009) Peridynamic theory for progressive failure prediction in homogeneous and heterogeneous materials. PhD Thesis, The University of Arizona
[23] Kilic B, Madenci E (2009) Prediction of crack paths in a quenched glass plate by using peridynamic theory. Int J Fract 156(2): 165–177 · Zbl 1273.74455 · doi:10.1007/s10704-009-9355-2
[24] Kilic B, Madenci E (2009) Structural stability and failure analysis using peridynamic theory. Int J Non-linear Mech 44(8): 845–854 · Zbl 1203.74045 · doi:10.1016/j.ijnonlinmec.2009.05.007
[25] Kozicki J, Tejchman J (2006) 2D lattice model for fracture in brittle materials. Arch Hydro-Eng Environ Mech 53(2): 71–88
[26] Kozicki J, Tejchman J (2008) Modelling of fracture process in concrete using a novel lattice model. Granul Matter 10(5): 377–388 · Zbl 1258.74188 · doi:10.1007/s10035-008-0104-4
[27] Lehoucq RB, Silling SA (2008) Force flux and the peridynamic stress tensor. J Mech Phys Solids 56(4): 1566–1577 · Zbl 1171.74319 · doi:10.1016/j.jmps.2007.08.004
[28] Macek RW, Silling SA (2007) Peridynamics via finite element analysis. Finite Elem Anal Des 43(15): 1169–1178 · doi:10.1016/j.finel.2007.08.012
[29] Mase GT, Smelser RE, Mase GE (1999) Continuum mechanics for engineers. CRC, Boca Raton · Zbl 0991.74500
[30] Moës N, Belytschko T (2002) Extended finite element method for cohesive crack growth. Eng Fract Mech 69(7): 813–833 · doi:10.1016/S0013-7944(01)00128-X
[31] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1): 131–150 · Zbl 0955.74066 · doi:10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
[32] Nishioka T (1995) Recent developments in computational dynamic fracture mechanics. Dynamic fracture mechanics (A 96-14151 02-39). Computational Mechanics Publications, Billerica, pp 1–60
[33] Parks ML, Lehoucq RB, Plimpton SJ, Silling SA (2008) Implementing peridynamics within a molecular dynamics code. Comput Phys Commun 179(11): 777–783 · Zbl 1197.82014 · doi:10.1016/j.cpc.2008.06.011
[34] Parks ML, Plimpton SJ, Lehoucq RB, Silling SA (2008) Peridynamics with LAMMPS: A user guide. Tech. rep., Technical Report SAND 2008-1035, Sandia National Laboratories, Livermore
[35] Sanford RJ (2003) Principles of fracture mechanics. Prentice Hall, New Delhi
[36] Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48(1): 175–209 · Zbl 0970.74030 · doi:10.1016/S0022-5096(99)00029-0
[37] Silling SA (2010) Linearized theory of peridynamic states. J Elast 99(1): 85–111 · Zbl 1188.74008 · doi:10.1007/s10659-009-9234-0
[38] Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 83(17–18): 1526–1535 · doi:10.1016/j.compstruc.2004.11.026
[39] Silling SA, Bobaru F (2005) Peridynamic modeling of membranes and fibers. Int J Non-linear Mech 40(2–3): 395–409 · Zbl 1349.74231 · doi:10.1016/j.ijnonlinmec.2004.08.004
[40] Silling SA, Lehoucq RB (2008) Convergence of peridynamics to classical elasticity theory. J Elast 93(1): 13–37. doi: 10.1007/s10659-008-9163-3 · Zbl 1159.74316 · doi:10.1007/s10659-008-9163-3
[41] Silling SA, Lehoucq RB (2010) Peridynamic theory of solid mechanics. Adv Appl Mech 44: 73–168 · doi:10.1016/S0065-2156(10)44002-8
[42] Silling SA, Zimmermann M, Abeyaratne R (2003) Deformation of a peridynamic bar. J Elast 73(1): 173–190 · Zbl 1061.74031 · doi:10.1023/B:ELAS.0000029931.03844.4f
[43] Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peridynamic states and constitutive modeling. J Elast 88(2): 151–184. doi: 10.1007/s10659-007-9125-1 · Zbl 1120.74003 · doi:10.1007/s10659-007-9125-1
[44] Tay TE (2003) Characterization and analysis of delamination fracture in composites: an overview of developments from 1990 to 2001. Appl Mech Rev 56: 1 · doi:10.1115/1.1504848
[45] Warren TL, Silling SA, Askari A, Weckner O, Epton MA, Xu J (2009) A non-ordinary state-based peridynamic method to model solid material deformation and fracture. Int J Solids Struct 46(5): 1186–1195 · Zbl 1236.74012 · doi:10.1016/j.ijsolstr.2008.10.029
[46] Weckner O, Abeyaratne R (2005) The effect of long-range forces on the dynamics of a bar. J Mech Phys Solids 53(3): 705–728 · Zbl 1122.74431 · doi:10.1016/j.jmps.2004.08.006
[47] Zimmermann M (2005) A continuum theory with long-range forces for solids. PhD Thesis, Massachusetts Institute of Technology
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.