×

zbMATH — the first resource for mathematics

Pinning synchronization of delayed dynamical networks via periodically intermittent control. (English) Zbl 1311.93061
Summary: This paper investigates the synchronization problem for a class of complex delayed dynamical networks by pinning periodically intermittent control. Based on a general model of complex delayed dynamical networks, using the Lyapunov stability theory and periodically intermittent control method, some simple criteria are derived for the synchronization of such dynamical networks. Furthermore, a Barabási-Albert network consisting of coupled delayed Chua oscillators is finally given as an example to verify the effectiveness of the theoretical results.{
©2009 American Institute of Physics}

MSC:
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
05C82 Small world graphs, complex networks (graph-theoretic aspects)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1103/PhysRevLett.64.821 · Zbl 0938.37019
[2] DOI: 10.1109/81.404047 · Zbl 0867.93042
[3] DOI: 10.1016/j.physa.2005.10.047
[4] DOI: 10.1016/j.physleta.2005.12.092
[5] DOI: 10.1137/070679090 · Zbl 1161.94011
[6] DOI: 10.1016/j.physa.2007.05.060
[7] DOI: 10.1016/j.physd.2004.03.012 · Zbl 1098.82622
[8] DOI: 10.1063/1.2803894 · Zbl 1163.37389
[9] DOI: 10.1109/TAC.2006.872760 · Zbl 1366.93544
[10] DOI: 10.1016/S0378-4371(02)00772-0 · Zbl 0995.90008
[11] DOI: 10.1109/TCSI.2004.835655 · Zbl 1374.94915
[12] DOI: 10.1016/j.automatica.2007.08.016 · Zbl 1283.93032
[13] DOI: 10.1016/j.automatica.2008.07.016 · Zbl 1158.93308
[14] DOI: 10.1103/PhysRevE.75.046103
[15] DOI: 10.1016/j.physd.2004.03.013 · Zbl 1098.82621
[16] DOI: 10.1109/PHYCON.2005.1513956
[17] DOI: 10.1103/PhysRevLett.79.2795
[18] DOI: 10.1103/PhysRevLett.81.1401
[19] DOI: 10.1016/S0167-2789(00)00112-3 · Zbl 0963.34030
[20] DOI: 10.1109/TCSII.2007.903205
[21] DOI: 10.1063/1.2430394 · Zbl 1159.93353
[22] DOI: 10.1063/1.2896089 · Zbl 06410954
[23] DOI: 10.1063/1.2967848 · Zbl 1309.34096
[24] DOI: 10.1126/science.286.5439.509 · Zbl 1226.05223
[25] DOI: 10.1142/S0218127406016550 · Zbl 1142.34387
[26] DOI: 10.1137/1.9781611970777 · Zbl 0816.93004
[27] DOI: 10.1109/81.948446
[28] DOI: 10.1063/1.2710964 · Zbl 1159.37356
[29] Halanay A., Differential Equations: Stability, Oscillations, Time Lags (1966) · Zbl 0144.08701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.