×

A scheme for remote state preparation of a general pure qubit with optimized classical communication cost. (English) Zbl 1311.81056

Summary: How to use shared entanglement and forward classical communication to remotely prepare an arbitrary (mixed or pure) state has been fascinating quantum information scientists. Berry has given a constructive scheme for remotely preparing a general pure state, using a pure entangled state and finite classical communication. To optimize the classical communication cost, Berry employed a coding of the high-dimensional target state. Though working in the high-dimensional cases, the coding method is inapplicable for low-dimensional systems, such as a pure qubit. Since qubit plays a central role in quantum information theory, here we propose an optimization procedure which can be used to minimize the classical communication cost in preparing a general pure qubit. Interestingly, our optimization procedure is linked to the uniform arrangement of \(N\) points on the Bloch sphere, which provides a geometric description.

MSC:

81P45 Quantum information, communication, networks (quantum-theoretic aspects)
81P40 Quantum coherence, entanglement, quantum correlations
81P15 Quantum measurement theory, state operations, state preparations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lo, H.-K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000) · doi:10.1103/PhysRevA.62.012313
[2] Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2000) · doi:10.1103/PhysRevA.63.014302
[3] Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001) · doi:10.1103/PhysRevLett.87.077902
[4] Devetak, I., Berger, T.: Low-entanglement remote state preparation. Phys. Rev. Lett. 87, 197901 (2001) · doi:10.1103/PhysRevLett.87.197901
[5] Luo, M.-X., Deng, Y., Chen, X.-B., Yang, Y.-X.: The faithful remote preparation of general quantum states. Quantum Inf. Process. 12, 279 (2013) · Zbl 1263.81083 · doi:10.1007/s11128-012-0374-y
[6] Zhang, Z.-H., Shu, L., Mo, Z.-W., Zheng, J., Ma, S.-Y., Luo, M.-X.: Joint remote state preparation between multi-sender and multi-receiver. Quantum Inf. Process. 13, 1979 (2014) · Zbl 1307.81023 · doi:10.1007/s11128-014-0790-2
[7] Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993) · Zbl 1051.81505 · doi:10.1103/PhysRevLett.70.1895
[8] Leung, D.W., Shor, P.: Oblivious remote state preparation. Phys. Rev. Lett. 90, 127905 (2003) · doi:10.1103/PhysRevLett.90.127905
[9] Ye, M.-Y., Zhang, Y.-S., Guo, G.-C.: Faithful remote state preparation using finite classical bits and a nonmaximally entangled state. Phys. Rev. A 69, 022310 (2004) · doi:10.1103/PhysRevA.69.022310
[10] Berry, D.W.: Resources required for exact remote state preparation. Phys. Rev. A 70, 062306 (2004) · doi:10.1103/PhysRevA.70.062306
[11] Saff, E.B., Kuijlaars, A.B.J.: Distributing many points on a sphere. Math. Intell. 19, 5 (1997) · Zbl 0901.11028 · doi:10.1007/BF03024331
[12] Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009) · Zbl 1205.81012 · doi:10.1103/RevModPhys.81.865
[13] Nielsen, M.A.: Conditions for a class of entanglement transformations. Phys. Rev. Lett. 83, 436 (1999) · doi:10.1103/PhysRevLett.83.436
[14] Nielsen, M.A., Vidal, G.: Majorization and the interconversion of bipartite states. Quantum Inf. Comput. 1, 76 (2001) · Zbl 1187.81053
[15] Aurenhammer, F.: Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Comput. Surv. 23, 345 (1991) · doi:10.1145/116873.116880
[16] Na, H.-S., Lee, C.-N., Cheong, O.: Voronoi diagrams on the sphere. Comput. Geom. 23, 183 (2002) · Zbl 1071.65021 · doi:10.1016/S0925-7721(02)00077-9
[17] Zheng, X., Ennis, R., Richards, G. P., Palffy-Muhoray, P.: A plane sweep algorithm for the voronoi tessellation of the sphere. Electron. Liq. Cryst. Commun. 1 (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.