×

zbMATH — the first resource for mathematics

Invariant-tori-like Lagrangian coherent structures in geophysical flows. (English) Zbl 1311.37042
Summary: The term “Lagrangian coherent structure” (LCS) is normally used to describe numerically detected structures whose properties are similar to those of stable and unstable manifolds of hyperbolic trajectories. The latter structures are invariant curves, i.e., material curves of fluid that serve as transport barriers. In this paper we use the term LCS to describe a different type of structure whose properties are similar to those of invariant tori in certain classes of two-dimensional incompressible flows. Like stable and unstable manifolds, invariant tori are invariant curves that serve as transport barriers. There are many differences, however, between traditional LCSs and invariant-tori-like LCSs. These differences are discussed with an emphasis on numerical techniques that can be used to identify invariant-tori-like LCSs. Structures of this type are often present in geophysical flows where zonal jets are present. A prime example of an invariant-torus-like LCS is the transport barrier near the core of the polar night jet in the Earth’s lower and middle stratospheres in the austral winter and early spring; this is the barrier that traps ozone-depleted air inside the ozone hole. This example is investigated using both a simple analytically prescribed flow and a velocity field produced by a general circulation model of the Earth’s atmosphere.{
©2010 American Institute of Physics}

MSC:
37J40 Perturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol’d diffusion
37J15 Symmetries, invariants, invariant manifolds, momentum maps, reduction (MSC2010)
37N10 Dynamical systems in fluid mechanics, oceanography and meteorology
76D05 Navier-Stokes equations for incompressible viscous fluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/S0167-2789(00)00142-1 · Zbl 0970.76043
[2] DOI: 10.1063/1.1403336 · Zbl 1184.76207
[3] DOI: 10.1016/j.physd.2005.10.007 · Zbl 1161.76487
[4] DOI: 10.1016/j.physd.2005.06.023 · Zbl 1149.86302
[5] DOI: 10.1063/1.2189885 · Zbl 1185.76700
[6] DOI: 10.1029/2006GL027800
[7] DOI: 10.1063/1.2740025 · Zbl 1144.81374
[8] DOI: 10.1098/rsta.2007.0020
[9] DOI: 10.1029/2007JC004533
[10] DOI: 10.1029/2008GL033957
[11] DOI: 10.1175/2009JPO4046.1
[12] DOI: 10.1175/2008JPO3975.1
[13] DOI: 10.1016/j.dsr2.2008.08.008
[14] DOI: 10.1175/2008JAS2579.1
[15] Andrews D. G., International Geophysical Series 40, in: Middle Atmosphere Dynamics (1987)
[16] DOI: 10.1016/0021-9169(89)90071-8
[17] DOI: 10.1016/S1364-6826(00)00114-0
[18] DOI: 10.1146/annurev.fluid.37.061903.175710 · Zbl 1117.76019
[19] Arnold V. I., Encyclopedia of Mathematical Sciences 3, in: Mathematical Aspects of Classical and Celestial Mechanics, 3. ed. (2006)
[20] DOI: 10.1063/1.858639 · Zbl 0781.76017
[21] DOI: 10.1070/rd1998v003n03ABEH000088 · Zbl 0932.37048
[22] DOI: 10.1137/S003614109834908X · Zbl 1049.37032
[23] DOI: 10.1016/0167-2789(95)00257-X · Zbl 0890.58068
[24] DOI: 10.1143/PTP.97.379
[25] DOI: 10.1103/PhysRevE.79.056215
[26] DOI: 10.1121/1.1582444
[27] DOI: 10.5194/npg-11-67-2004
[28] DOI: 10.1175/JAS4036.1
[29] DOI: 10.1103/PhysRevLett.98.104102
[30] DOI: 10.1063/1.858052
[31] DOI: 10.3934/dcds.2007.18.569 · Zbl 1130.37030
[32] DOI: 10.1137/S0036141094276913 · Zbl 0863.34043
[33] DOI: 10.1017/CBO9780511661983.002
[34] DOI: 10.1070/RD2001v006n02ABEH000169 · Zbl 0992.37050
[35] DOI: 10.1070/RD2005v010n01ABEH000297 · Zbl 1078.30508
[36] DOI: 10.1007/BF02269374 · Zbl 0951.37038
[37] DOI: 10.1016/0370-1573(79)90023-1
[38] DOI: 10.1063/1.1477449 · Zbl 1185.76161
[39] DOI: 10.1017/S0022112007007872 · Zbl 1141.76486
[40] DOI: 10.1017/S0022112006003648 · Zbl 1111.76025
[41] DOI: 10.1103/PhysRevLett.98.144502
[42] DOI: 10.1088/1367-2630/9/11/400
[43] DOI: 10.1007/s00162-006-0031-0 · Zbl 1170.76346
[44] DOI: 10.1016/S0065-2156(08)70006-1
[45] DOI: 10.1063/1.166483 · Zbl 1071.76524
[46] DOI: 10.1080/07055900.1997.9649595
[47] DOI: 10.1029/2000JD900133
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.