×

zbMATH — the first resource for mathematics

Global smooth solutions to the \(n\)-dimensional damped models of incompressible fluid mechanics with small initial datum. (English) Zbl 1311.35236
Summary: In this paper, we consider the \(n\)-dimensional (\(n\geq 2\)) damped models of incompressible fluid mechanics in Besov spaces and establish the global (in time) regularity of classical solutions provided that the initial data are suitable small.

MSC:
35Q35 PDEs in connection with fluid mechanics
35B35 Stability in context of PDEs
35B65 Smoothness and regularity of solutions to PDEs
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
76W05 Magnetohydrodynamics and electrohydrodynamics
35Q86 PDEs in connection with geophysics
86A10 Meteorology and atmospheric physics
76E06 Convection in hydrodynamic stability
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abidi, H; HmidI, T, On the global well-posedness for Boussinesq system, J. Differ. Equ., 233, 199-220, (2007) · Zbl 1111.35032
[2] Adhikar, D; Cao, C; Wu, J; Xu, X, Small global solutions to the damped two-dimensional Boussinesq equations, J. Differ. Equ., 256, 3594-3613, (2014) · Zbl 1290.35193
[3] Bahour, H., Chemin, J., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, vol. 343. Springer, Heidelberg (2011) · Zbl 1227.35004
[4] Beale, J; Kato, T; Majda, A, Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Commun. Math. Phys., 94, 61-66, (1984) · Zbl 0573.76029
[5] Caffarelli, L; Vasseur, A, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. Math., 171, 1903-1930, (2010) · Zbl 1204.35063
[6] Caflisch, R; Klapper, I; Steele, G, Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD, Commun. Math. Phys., 184, 443-455, (1997) · Zbl 0874.76092
[7] Cannone, M; Chen, Q; Miao, C, A losing estimate for the ideal MHD equations with application to blow-up criterion, SIAM J. Math. Anal., 38, 1847-1859, (2007) · Zbl 1126.76057
[8] Cao, C; Regmi, D; Wu, J, The 2D MHD equations with horizontal dissipation and horizontal magnetic diffusion, J. Differ. Equ., 254, 2661-2681, (2013) · Zbl 1270.35143
[9] Cao, C; Titi, E, Global well-posedness of the three-dimensional viscous primitive equations of large scale Ocean and atmosphere dynamics, Ann. Math., 166, 245-267, (2007) · Zbl 1151.35074
[10] Cao, C; Wu, J, Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion, Adv. Math., 226, 1803-1822, (2011) · Zbl 1213.35159
[11] Cao, C; Wu, J, Global regularity for the 2D anisotropic Boussinesq equations with vertical dissipation, Arch. Ration. Mech. Anal., 208, 985-1004, (2013) · Zbl 1284.35140
[12] Cao, C; Wu, J; Yuan, B, The 2D incompressible magnetohydrodynamics equations with only magnetic diffusion, SIAM J. Math. Anal., 46, 588-602, (2014) · Zbl 1293.35233
[13] Chae, D, Local existence and blow-up criterion for the Euler equations in the Besov spaces, Asymptot. Anal., 38, 339-358, (2004) · Zbl 1068.35097
[14] Chae, D, Global regularity for the 2D Boussinesq equations with partial viscosity terms, Adv. Math., 203, 497-513, (2006) · Zbl 1100.35084
[15] Chae, D, On the continuation principles for the Euler equations and the quasi-geostrophic equation, J. Differ. Equ., 227, 640-651, (2006) · Zbl 1105.35067
[16] Chae, D; Constantin, P; Córdoba, D; Gancedo, F; Wu, J, Generalized surface quasi-geostrophic equations with singular velocities, Commun. Pure Appl. Math., 65, 1037-1066, (2012) · Zbl 1244.35108
[17] Chae, D, Constantin, Wu, J.: inviscid models generalizing the 2D Euler and the surface quasi-geostrophic equations, Arch. Ration. Mech. Anal., 202, 35-62, (2011) · Zbl 1266.76010
[18] Chae, D; Lee, J, Global well-posedness in the super-critical dissipative quasigeostrophic equations, Commun. Math. Phys., 233, 297-311, (2003) · Zbl 1019.86002
[19] Chae, D; Nam, H, Local existence and blow-up criterion for the Boussinesq equations, Proc. R. Soc. Edinburgh Sect. A., 127, 935-946, (1997) · Zbl 0882.35096
[20] Chae, D; Wu, J, The 2D Boussinesq equations with logarithmically supercritical velocities, Adv. Math., 230, 1618-1645, (2012) · Zbl 1248.35156
[21] Chemin, C.: Perfect Incompressible Fluids. Oxford University Press, New York (2009)
[22] Chen, Q; Miao, C; Zhang, Z, A new bernstein’s inequality and the 2D dissipative quasi-geostrophic equation, Commun. Math. Phys., 271, 821-838, (2007) · Zbl 1142.35069
[23] Chen, Q; Miao, C; Zhang, Z, On the regularity criterion of weak solution for the 3D viscous magneto-hydrodynamics equations, Commun. Math. Phys., 284, 919-930, (2008) · Zbl 1168.35035
[24] Chen, Q; Miao, C; Zhang, Z, On the well-posedness of the ideal MHD equations in the Triebel-Lizorkin spaces, Arch. Ration. Mech. Anal., 195, 561-578, (2010) · Zbl 1184.35258
[25] Constantin, P, Geometric statistics in turbulence, SIAM Rev., 36, 73-98, (1994) · Zbl 0803.35106
[26] Constantin, P, On the Euler equations of incompressible fluids, Bull. Am. Math. Soc., 44, 603-621, (2007) · Zbl 1132.76009
[27] Constantin, P; Córdoba, D; Wu, J, On the critical dissipative quasi-geostrophic equation, Indiana Univ. Math. J., 50, 97-107, (2001) · Zbl 0989.86004
[28] Constantin, P; Fefferman, C; Majda, A, Geometric constraints on potential singularity formulation in the 3-D Euler equations, Commun. Partial Differ. Equ., 21, 559-571, (1996) · Zbl 0853.35091
[29] Constantin, P., Foias, C.: Navier-Stokes Equations, Chicago Lectures in Mathematics. University of Chicago Press, Chicago (1988)
[30] Constantin, P; Tarfulea, A; Vicol, V, Absence of anomalous dissipation of energy in forced two dimensional fluid equations, Arch. Ration. Mech. Anal., 212, 875-903, (2014) · Zbl 1296.35117
[31] Constantin, P; Vicol, V, Nonlinear maximum principles for dissipative linear nonlocal operators and applications, Geom. Funct. Anal., 22, 1289-1321, (2012) · Zbl 1256.35078
[32] Constantin, P; Wu, J, Behavior of solutions of 2D quasi-geostrophic equations, SIAM J. Math. Anal., 30, 937-948, (1999) · Zbl 0957.76093
[33] Constantin, P; Wu, J, Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25, 1103-1110, (2008) · Zbl 1149.76052
[34] Constantin, P; Wu, J, Hölder continuity of solutions of supercritical dissipative hydrodynamic transport equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26, 159-180, (2009) · Zbl 1163.76010
[35] Córdoba, A; Córdoba, D, A maximum principle applied to quasi-geostrophic equations, Commun. Math. Phys., 249, 511-528, (2004) · Zbl 1309.76026
[36] Danchin, R, Remarks on the lifespan of the solutions to some models of incompressible fluid mechanics, Proc. Am. Math. Soc., 141, 1979-1993, (2013) · Zbl 1283.35080
[37] Danchin, R; Paicu, M, Global well-posedness issues for the inviscid Boussinesq system with yudovich’s type data, Commun. Math. Phys., 290, 1-14, (2009) · Zbl 1186.35157
[38] Danchin, R; Paicu, M, Global existence results for the anisotropic Boussinesq system in dimension two, Math. Models Methods Appl. Sci., 21, 421-457, (2011) · Zbl 1223.35249
[39] Dong, H; Li, D, Spatial analyticity of the solutions to the subcritical dissipative quasigeostrophic equations, Arch. Ration. Mech. Anal., 189, 131-158, (2008) · Zbl 1157.35456
[40] Fan, J; Malaikah, H; Monaquel, S; Nakamura, G; Zhou, Y, Global Cauchy problem of 2D generalized MHD equations, Monatsh. Math., 175, 127-131, (2014) · Zbl 1297.35182
[41] Gancedo, F, Existence for the \(α \)-patch model and the QG sharp front in Sobolev spaces, Adv. Math., 217, 2569-2598, (2008) · Zbl 1148.35099
[42] Hmidi, T; Keraani, S, Keraani, global solutions of the super-critical 2D quasi-geostrophic equation in Besov spaces, Adv. Math., 214, 618-638, (2007) · Zbl 1119.76070
[43] Hmidi, T; Keraani, S; Rousset, F, Global well-posedness for a Boussinesq-Navier-Stokes system with critical dissipation, J. Differ. Equ., 249, 2147-2174, (2010) · Zbl 1200.35228
[44] Hmidi, T; Keraani, S; Rousset, F, Global well-posedness for Euler-Boussinesq system with critical dissipation, Commun. Partial Differ. Equ., 36, 420-445, (2011) · Zbl 1284.76089
[45] Hou, TY; Li, C, Global well-posedness of the viscous Boussinesq equations, Discret. Contin. Dyn. Syst., 12, 1-12, (2005) · Zbl 1274.76185
[46] Kato, T, Nonstationary flows of viscous and ideal fluids in \(\mathbb{R}^{3}\), J. Funct. Anal., 9, 296-305, (1972) · Zbl 0229.76018
[47] Kato, T.: Liapunov Functions and Monotonicity in the Euler and Navier-Stokes Equations, Lecture Notes in Mathematics, vol. 1450. Springer, Berlin (1990) · Zbl 0727.35107
[48] Kozono, H; Taniuchi, Y, Limiting case of the Sobolev inequality in BMO, with application to the Euler equations, Commun. Math. Phys., 214, 191-200, (2000) · Zbl 0985.46015
[49] Kiselev, A, Nonlocal maximum principles for active scalars, Adv. Math., 227, 1806-1826, (2011) · Zbl 1244.35022
[50] Kiselev, A; Nazarov, F; Volberg, A, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math., 167, 445-453, (2007) · Zbl 1121.35115
[51] Larios, A., Lunasin, E., Titi, E.: Global well-posedness for the 2D Boussinesq system without heat diffusion and with either anisotropic viscosity or inviscid Voigt-\(α \) regularization, arXiv:1010.5024v1 [math.AP] 25 Oct 2010. · Zbl 1132.76009
[52] Li, D; Rodrigo, J, Blow up for the generalized surface quasi-geostrophic equation with supercritical dissipation, Commun. Math. Phys., 286, 111-124, (2009) · Zbl 1172.86301
[53] Majda, A., Bertozzi, A.: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge (2002) · Zbl 0983.76001
[54] Miao, C., Wu, J., Zhang, Z.: Littlewood-Paley Theory and its Applications in Partial Differential Equations of Fluid Dynamics. Science Press, Beijing (2012). (in Chinese)
[55] Miao, C; Xue, L, On the global well-posedness of a class of Boussinesq-Navier-Stokes systems, NoDEA Nonlinear Differ. Equ. Appl., 18, 707-735, (2011) · Zbl 1235.76020
[56] Miao, C; Xue, L, On the regularity of a class of generalized quasi-geostrophic equations, J. Differ. Equ., 251, 2789-2821, (2011) · Zbl 1292.76071
[57] Miura, H, Dissipative quasi-geostrophic equation for large initial data in the critical Sobolev space, Commun. Math. Phys., 267, 141-157, (2006) · Zbl 1113.76029
[58] Pak, H; Park, Y, Existence of solution for the Euler equations in a critical Besov space \(B_{∞,1}^{1}(\mathbb{R}^{d})\), Commun. Partial Differ. Equ., 29, 1149-1166, (2004) · Zbl 1091.76006
[59] Pedlosky, J.: Geophysical Fluid Dynamics. Springer, New York (1987) · Zbl 0713.76005
[60] Sermange, M; Temam, R, Some mathematical questions related to the MHD equations, Commun. Pure Appl. Math., 36, 635-664, (1983) · Zbl 0524.76099
[61] Sideris, T; Thomases, B; Wang, D, Long time behavior of solutions to the 3D compressible Euler equations with damping, Commun. Partial Differ. Equ., 28, 795-816, (2003) · Zbl 1048.35051
[62] Shu, EW; Shu, C-W, Small-scale structures in Boussinesq convection, Phys. Fluids, 6, 49-58, (1994) · Zbl 0822.76087
[63] Temam, R.: Navier-Stokes Equations: Theory and Numerical Analysis, AMS Chelsea Publishing, Providence, RI, 2001, reprint of the 1984 edition, MR 1846644 (2002j:76001). · Zbl 0981.35001
[64] Tran, CV; Yu, X; Zhai, Z, On global regularity of 2D generalized magnetohydrodynamics equations, J. Differ. Equ., 254, 4194-4216, (2013) · Zbl 1283.35094
[65] Triebel, H.: Theory of Function Spaces II. Birkhauser, Basel (1992) · Zbl 0763.46025
[66] Wu, J, The quasi-geostrophic equation and its two regularizations, Commun. Partial Differ. Equ., 27, 1161-1181, (2002) · Zbl 1012.35067
[67] Wu, J, The generalized MHD equations, J. Differ. Equ., 195, 284-312, (2003) · Zbl 1057.35040
[68] Wu, J, Global solutions of the 2D dissipative quasi-geostrophic equation in Besov spaces, SIAM J. Math. Anal., 36, 1014-1030, (2005) · Zbl 1083.76064
[69] Wu, J, The two-dimensional quasi-geostrophic equation with critical or supercritical dissipation, Nonlinearity, 18, 139-154, (2005) · Zbl 1067.35002
[70] Wu, J, Regularity criteria for the generalized MHD equations, Commun. Partial Differ. Equ., 33, 285-306, (2008) · Zbl 1134.76068
[71] Wu, J, Global regularity for a class of generalized magnetohydrodynamic equations, J. Math. Fluid Mech., 13, 295-305, (2011) · Zbl 1270.35371
[72] Xu, X, Global regularity of solutions of 2D Boussinesq equations with fractional diffusion, Nonlinear Anal., 72, 677-681, (2010) · Zbl 1177.76024
[73] Xu, X; Ye, Z, The lifespan of solutions to the inviscid 3D Boussinesq system, Appl. Math. Lett., 26, 854-859, (2013) · Zbl 1314.35113
[74] Yamazaki, K, On the global regularity of two-dimensional generalized magnetohydrodynamics system, J. Math. Anal. Appl., 416, 99-111, (2014) · Zbl 1300.35107
[75] Yamazaki, K, Remarks on the global regularity of the two-dimensional magnetohydrodynamics system with zero dissipation, Nonlinear Anal., 94, 194-205, (2014) · Zbl 1282.35114
[76] Ye, Z, Blow-up criterion of smooth solutions for the Boussinesq equations, Nonlinear Anal., 110, 97-103, (2014) · Zbl 1300.35109
[77] Ye, Z; Xu, X, Global regularity of the two-dimensional incompressible generalized magnetohydrodynamics system, Nonlinear Anal., 100, 86-96, (2014) · Zbl 1288.35406
[78] Zhang, Z; Liu, X, On the blow-up criterion of smooth solutions to the 3D ideal MHD equations, Acta Math. Appl. Sinica E, 20, 695-700, (2004) · Zbl 1138.35382
[79] Zhou, Y, Regularity criteria for the generalized viscous MHD equations, Ann. Inst. H. Poincar Anal. Non Linaire, 24, 491-505, (2007) · Zbl 1130.35110
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.