zbMATH — the first resource for mathematics

A Lagrangian approach for the compressible Navier-Stokes equations. (Une approche lagrangienne pour le systéme de Navier-Stokes compressible.) (English. French summary) Zbl 1311.35214
The author investigates the Cauchy problem for the barotropic compressible Navier-Stokes equations with variable density in the whole space \(\mathbb R^{n}\), \(n \geq 2\), in critical Besov functional spaces \(\dot{B}_{p,1}^{n/p} (\mathbb R^{n})\), which have the same invariance with respect to time and space dilation as the system itself, at the initial date for the density \(\rho=\rho(t,x) \in ^{\mathbb R_{t}}\) and the velocity \(u=u(x)\), \(a \equiv \rho_{0}(0,x)-\lambda \in \), \(u_{0}(0,x) \in \dot{B}_{p,1}^{n/p-1} (\mathbb R^{n})\).
For any \(p\in[1,2n)\) at the assumption \(\| a_{0}\|_{\dot{B}_{p,1}^{n/p} (\mathbb R^{n})} \leq c\) with small enough constant \(c\) on the previous author’s articles the following facts are proved: the existence of a local solution \((\rho,u)\) such that \(a=(\rho-1) \in C_{b}([0,T];\dot{B}_{p,1}^{n/p} )\), \(u \in C_{b}([0,T];\dot{B}_{p,1}^{n/p-1} )\), \(\partial_{t} u\), \(\nabla^{2} u \in L^{1}([0,T];\dot{B}_{p,1}^{n/p-1})\) with its uniqueness in the above space, if \(p \leq n\).
In this article the author has improved these results: initial velocities in critical Besov spaces with (not too) negative indices generate a unique local solution; apart from (critical) regularity, the initial density just has to be bounded away from \(0\) and to tend to some positive constant at infinity. These results may be extended on density-dependent viscosity coefficients. The usage of Lagrangian coordinates is a key moment for the proof that the conditions for the solution uniqueness are the same as for the existence. Lipschitz continuity of the flow map in Lagrangian coordinates is also established.

35Q35 PDEs in connection with fluid mechanics
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
Full Text: DOI
[1] Bahouri, Hajer; Chemin, Jean-Yves; Danchin, Raphaël, Fourier analysis and nonlinear partial differential equations, 343, xvi+523 pp., (2011), Springer, Heidelberg · Zbl 1227.35004
[2] Bony, Jean-Michel, Calcul symbolique et propagation des singularités pour LES équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup. (4), 14, 2, 209-246, (1981) · Zbl 0495.35024
[3] Charve, Frédéric; Danchin, Raphaël, A global existence result for the compressible Navier-Stokes equations in the critical \(L^p\) framework, Arch. Ration. Mech. Anal., 198, 1, 233-271, (2010) · Zbl 1229.35167
[4] Chen, Qionglei; Miao, Changxing; Zhang, Zhifei, Global well-posedness for compressible Navier-Stokes equations with highly oscillating initial velocity, Comm. Pure Appl. Math., 63, 9, 1173-1224, (2010) · Zbl 1202.35002
[5] Chen, Qionglei; Miao, Changxing; Zhang, Zhifei, Well-posedness in critical spaces for the compressible Navier-Stokes equations with density dependent viscosities, Rev. Mat. Iberoam., 26, 3, 915-946, (2010) · Zbl 1205.35189
[6] Cho, Yonggeun; Choe, Hi Jun; Kim, Hyunseok, Unique solvability of the initial boundary value problems for compressible viscous fluids, J. Math. Pures Appl. (9), 83, 2, 243-275, (2004) · Zbl 1080.35066
[7] Danchin, R., Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math., 141, 3, 579-614, (2000) · Zbl 0958.35100
[8] Danchin, R., On the uniqueness in critical spaces for compressible Navier-Stokes equations, NoDEA Nonlinear Differential Equations Appl., 12, 1, 111-128, (2005) · Zbl 1125.76061
[9] Danchin, R., Well-posedness in critical spaces for barotropic viscous fluids with truly not constant density, Comm. Partial Differential Equations, 32, 7-9, 1373-1397, (2007) · Zbl 1120.76052
[10] Danchin, Raphaël, Local theory in critical spaces for compressible viscous and heat-conductive gases, Comm. Partial Differential Equations, 26, 7-8, 1183-1233, (2001) · Zbl 1007.35071
[11] Danchin, Raphaël, On the solvability of the compressible Navier-Stokes system in bounded domains, Nonlinearity, 23, 2, 383-407, (2010) · Zbl 1184.35238
[12] Danchin, Raphaël, On the well-posedness of the incompressible density-dependent Euler equations in the \(L^p\) framework, J. Differential Equations, 248, 8, 2130-2170, (2010) · Zbl 1192.35137
[13] Danchin, Raphaël, Fourier analysis methods for compressible flows, (2012) · Zbl 1239.35001
[14] Danchin, Raphaël; Mucha, Piotr Bogusław, A Lagrangian approach for the incompressible Navier-Stokes equations with variable density, Comm. Pure Appl. Math., 65, 10, 1458-1480, (2012) · Zbl 1247.35088
[15] Germain, Pierre, Weak-strong uniqueness for the isentropic compressible Navier-Stokes system, J. Math. Fluid Mech., 13, 1, 137-146, (2011) · Zbl 1270.35342
[16] Haspot, Boris, Existence of global strong solutions in critical spaces for barotropic viscous fluids, Arch. Ration. Mech. Anal., 202, 2, 427-460, (2011) · Zbl 1427.76230
[17] Haspot, Boris, Well-posedness in critical spaces for the system of compressible Navier-Stokes in larger spaces, J. Differential Equations, 251, 8, 2262-2295, (2011) · Zbl 1229.35182
[18] Hoff, David, Uniqueness of weak solutions of the Navier-Stokes equations of multidimensional, compressible flow, SIAM J. Math. Anal., 37, 6, 1742-1760 (electronic), (2006) · Zbl 1100.76052
[19] Krylov, N. V., Lectures on elliptic and parabolic equations in Sobolev spaces, 96, xviii+357 pp., (2008), American Mathematical Society, Providence, RI · Zbl 1147.35001
[20] Lions, Pierre-Louis, Mathematical topics in fluid mechanics. Vol. 2, 10, xiv+348 pp., (1998), The Clarendon Press, Oxford University Press, New York · Zbl 0908.76004
[21] Mucha, Piotr Bogusław, The Cauchy problem for the compressible Navier-Stokes equations in the \(L_p\)-framework, Nonlinear Anal., 52, 4, 1379-1392, (2003) · Zbl 1048.35065
[22] Valli, Alberto, An existence theorem for compressible viscous fluids, Ann. Mat. Pura Appl. (4), 130, 197-213, (1982) · Zbl 0599.76081
[23] Valli, Alberto; Zajączkowski, Wojciech M., Navier-Stokes equations for compressible fluids: global existence and qualitative properties of the solutions in the general case, Comm. Math. Phys., 103, 2, 259-296, (1986) · Zbl 0611.76082
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.