×

zbMATH — the first resource for mathematics

From Golden spirals to constant slope surfaces. (English) Zbl 1311.14037
Summary: In this paper, we find all constant slope surfaces in the Euclidean 3-space, namely, those surfaces for which the position vector of a point of the surface makes constant angle with the normal at the surface in that point. These surfaces could be thought as the bidimensional analog of the generalized helices. Some pictures are drawn by using the parametric equations we found.
©2010 American Institute of Physics

MSC:
14J25 Special surfaces
14H45 Special algebraic curves and curves of low genus
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Boyadzhiev, K. N., Coll. Math. J., 30, 23, (1999)
[2] do Carmo, M. P., Differential Geometry of Curves and Surfaces, (1976), Prentice-Hall, Inc.: Prentice-Hall, Inc., Englewood Cliffs, NJ · Zbl 0326.53001
[3] Cermelli, P.; Di Scala, A. J., Philos. Mag., 87, 1871, (2007)
[4] Dillen, F.; Fastenakels, J.; Van der Veken, J.; Vrancken, L., Monatsh. Math., 152, 89, (2007) · Zbl 1140.53006
[5] Dillen, F.; Munteanu, M. I.; Dillen, F.; Van de Woestyne, I., 185-193, (2007)
[6] Dillen, F.; Munteanu, M. I., Bull. Braz. Math. Soc. N. S., 40, 85, (2009) · Zbl 1173.53012
[7] Glaesner, G.; Gruber, F., J. Math. Arts, 1, 59, (2007) · Zbl 1149.53006
[8] İlarslan, K.; Boyacıoğlu, O., Chaos, Solitons Fractals, 38, 1383, (2008) · Zbl 1154.53304
[9] Kappraff, J., Beyond Measure-A Guided Tour Through Nature, Myth, and Number, 28, (2002), World Scientific: World Scientific, Singapore · Zbl 1034.52001
[10] Kühnel, W., Differential Geometry: Curves-Surfaces-Manifolds, 16, (2006), American Mathematical Society: American Mathematical Society, USA
[11] Lévy, M., Compt. Rend., 87, 788, (1878)
[12] Lorimer, J. W., J. Theor. Biol., 242, 880, (2006)
[13] Mukhopahyay, U., Resonance, 9, 39, (2004)
[14] Munteanu, M. I.; Nistor, A. I., Turkish J. Math., 33, 169, (2009)
[15] Nistor, A. I.
[16] di Scala, A. J.; Ruiz Hernández, G., Monatsh. Math., 157, 205, (2009) · Zbl 1169.53006
[17] Tucker, V. A., J. Exp. Biol., 203, 3745, (2000)
[18] Tucker, V. A.; Tucker, A. E.; Akers, K.; Enderson, J. H., J. Exp. Biol., 203, 375, (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.