×

zbMATH — the first resource for mathematics

New state dependent uncertainty principle and design of objective function for optimisation: utility of kinetic and potential energy uncertainties. (English) Zbl 1310.81100
Summary: In this work a new state dependent uncertainty principle between kinetic and potential energy is formulated using time independent Schrödinger equation and correspondence principle. Validity of the above said uncertainty principle is also demonstrated by linear variational calculation of a one-dimensional model potential. An objective function is also been designed, to support excited state non-linear variational description of bound stationary state of any type of system. This newly designed function will serve as an alternative of \(\Delta H\) in excited state nonlinear variational purpose. The utility of these objective functions is demonstrated by already evolved non-linear variational technique by using a one-dimensional model potential where crux of the problem lies on the determination of the node of excited states.

MSC:
81S05 Commutation relations and statistics as related to quantum mechanics (general)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Powell J.L., Crasemann B.: Quantum Mechanics. Narosa Publishing House, New Delhi (1998) · Zbl 0094.42202
[2] Epstein S.T.: The Variational Method in Quantum Chemistry. Academic Press, New York (1974)
[3] W. Yurgrau, S. Mandelstam, Variational Principle in Dynamics and Quantum Theory, 3rd edn (Dover Publications, New York 1979)
[4] Hylleraas E.A., Undheim B.: Z Phys. 65, 759 (1930) · doi:10.1007/BF01397263
[5] Macdonald J.K.L.: Phys. Rev. 43, 830 (1933) · Zbl 0007.11803 · doi:10.1103/PhysRev.43.830
[6] Hendekovic J.: Chem. Phys. Lett. 90, 198 (1982) · doi:10.1016/0009-2614(82)80024-9
[7] Miller H.G., Geveci T.: Chem. Phys. Lett. 100, 115 (1983) · doi:10.1016/0009-2614(83)87274-1
[8] Hendekovic J., Kucar J.: Chem. Phys. Lett. 100, 117 (1983) · doi:10.1016/0009-2614(83)87275-3
[9] Thulstrup P.W., Ohrn Y., Linderberg J.: Chem. Phys. Lett. 9, 5 (1971)
[10] Read F.H.: Chem. Phys. Lett. 12, 4 (1972)
[11] Frost A.A., Kellogg R.E., Curtis C.E.: Rev. Mod. Phys. 32, 2 (1968)
[12] Frost A.A.: J. Chem. Phys. 10, 240 (1942) · doi:10.1063/1.1723712
[13] Gerjouy E., Rau A.R.P., Spruch L.: Rev. Mod. Phys. 55, 3 (1983)
[14] S.A. Rice, in Advances in Chemical Physics, vol. 58, ed. by I. Prigogine (John Wiley and Sons, Inc., 1983)
[15] P.A.M. Dirac, Principles of Quantum Mechanics, 4th edn. (Oxford Science Publication, Oxford, 1958) · Zbl 0080.22005
[16] Pathak R.K., Chandra A.K., Bhattacharyya K.: Phys. Rev. A 48, 4097 (1993) · doi:10.1103/PhysRevA.48.4097
[17] Pathak R.K., Bhattacharyya K.: Chem. Phys. Lett. 230, 437 (1994) · doi:10.1016/0009-2614(94)01179-6
[18] Mukhopadhyay S., Bhattacharyya K.: Int. J. Quantum Chem. 86, 330 (2002) · doi:10.1002/qua.1114
[19] Das C., Bhattacharyya K.: Phys. Rev. A 79, 012107 (2009) · doi:10.1103/PhysRevA.79.012107
[20] N. Mukherjee, R.K. Pathak, K. Bhattacharyya, Int. J. Quantum Chem. (2010). doi: 10.1002/qua.22925
[21] N. Mukherjee, K. Bhattacharyya, Int. J. Quantum Chem. (2011). doi: 10.1002/qua.23071
[22] Koscik P., Okopinska A.: J. Phys. A, Math. Theor. 40, 10851 (2007) · Zbl 1123.81024 · doi:10.1088/1751-8113/40/35/009
[23] P. Pedram, M. Mirzaei, S.S. Gausheh, Mol Phys. 108, 1949 (2010)
[24] Bandyopadhyay S.K., Bhattacharyya K.: Int. J. Quantum Chem. 106, 390 (2006) · doi:10.1002/qua.20735
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.