×

zbMATH — the first resource for mathematics

Fixed points of a new type of contractive mappings in complete metric spaces. (English) Zbl 1310.54074
Summary: In the article, we introduce a new concept of contraction and prove a fixed point theorem which generalizes Banach contraction principle in a different way than in the known results from the literature. The article includes an example which shows the validity of our results, additionally there is delivered numerical data which illustrates the provided example.

MSC:
54H25 Fixed-point and coincidence theorems (topological aspects)
54E50 Complete metric spaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Banach, S, Sur LES opérations dans LES ensembles abstraits et leur applications aux équations intégrales, Fund Math, 3, 133-181, (1922) · JFM 48.0201.01
[2] Boyd, DW; Wong, JSW, On nonlinear contractions, Proc Am Math Soc, 20, 458-464, (1969) · Zbl 0175.44903
[3] Rakotch, E, A note on contractive mappings, Proc Am Math Soc, 13, 459-465, (1962) · Zbl 0105.35202
[4] Arandjelović, I; Kadelburg, Z; Radenović, S, Boyd-Wong-type common fixed point results in cone metric spaces, Appl Math Comput, 217, 7167-7171, (2011) · Zbl 1213.54059
[5] Huang, LG; Zhang, X, Cone metric spaces and fixed point theorems of contractive maps, J Math Anal Appl, 332, 1467-1475, (2007) · Zbl 1118.54022
[6] Kadelburg, Z; Radenović, S; Rakočević, V, Remarks on ”Quasi-contraction on a cone metric space, Appl Math Lett, 22, 1674-1679, (2009) · Zbl 1180.54056
[7] Tarafdar, E, An approach to fixed-point theorems on uniform spaces, Trans Am Math Soc, 191, 209-225, (1974) · Zbl 0287.54048
[8] Nadler, SB, Multi-valued contraction mappings, Pac J Math, 30, 475-488, (1969) · Zbl 0187.45002
[9] Ćirić, L, Multi-valued nonlinear contraction mappings, Nonlinear Anal, 71, 2716-2723, (2009) · Zbl 1179.54053
[10] Feng, Y; Liu, S, Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings, J Math Anal Appl, 317, 103-112, (2006) · Zbl 1094.47049
[11] Klim, D; Wardowski, D, Fixed point theorems for set-valued contractions in complete metric spaces, J Math Anal Appl, 334, 132-139, (2007) · Zbl 1133.54025
[12] Mizoguchi, N; Takahashi, W, Fixed point theorems for multivalued mappings on complete metric spaces, J Math Anal Appl, 141, 177-188, (1989) · Zbl 0688.54028
[13] Reich, S, Fixed points of contractive functions, Boll Unione Mat Ital, 5, 26-42, (1972) · Zbl 0249.54026
[14] Reich, S, Approximate selections, best approximations, fixed points, and invariant sets, J Math Anal Appl, 62, 104-113, (1978) · Zbl 0375.47031
[15] Türkoglu, D, Fisher B: fixed point of multivalued mapping in uniform spaces, Proc Indian Acad Sci (Math Sci), 113, 183-187, (2003) · Zbl 1036.54516
[16] Wardowski, D, Endpoints and fixed points of set-valued contractions in cone metric spaces, Nonlinear Anal, 71, 512-516, (2009) · Zbl 1169.54023
[17] Wardowski, D, On set-valued contractions of Nadler type in cone metric spaces, Appl Math Lett, 24, 275-278, (2011) · Zbl 1206.54067
[18] Włodarczyk, K; Obczyński, C; Wardowski, D, Set-valued dynamic systems and random iterations of set-valued weaker contractions in uniform spaces, J Math Anal Appl, 318, 772-780, (2006) · Zbl 1095.54019
[19] Włodarczyk, K; Plebaniak, R; Obczyński, C, The uniqueness of endpoints for set-valued dynamical systems of contractions of Meir-Keeler type in uniform spaces, Nonlinear Anal, 67, 3373-3383, (2007) · Zbl 1202.54016
[20] Zhong, CK; Zhu, J; Zhao, PH, An extension of multi-valued contraction mappings and fixed points, Proc Am Math Soc, 128, 2439-2444, (1999) · Zbl 0948.47058
[21] Jachymski, J; Jóźwik, I, On Kirk’s asymptotic contractions, J Math Anal Appl, 300, 147-159, (2004) · Zbl 1064.47052
[22] Kirk, WA, Fixed points of asymptotic contractions, J Math Anal Appl, 277, 645-650, (2003) · Zbl 1022.47036
[23] Suzuki, T, Fixed-point theorem for asymptotic contractions of Meir-Keeler type in complete metric spaces, Non-linear Anal, 64, 971-978, (2006) · Zbl 1101.54047
[24] Meir, A; Keeler, E, A theorem on contraction mappings, J Math Anal Appl, 28, 326-329, (1969) · Zbl 0194.44904
[25] Agarwal, RP; O’Regan, D; Shahzad, N, Fixed point theory for generalized contractive maps of Meir-Keeler type, Math Nachr, 276, 3-22, (2004) · Zbl 1086.47016
[26] Abdeljawad, T, Fixed points for generalized weakly contractive mappings in partial metric spaces, Math Comput Modelling, 54, 2923-2927, (2011) · Zbl 1237.54038
[27] Abdeljawad, T; Karapinar, E; Taş, K, Existence and uniqueness of a common fixed point on partial metric spaces, Appl Math Lett, 24, 1900-1904, (2011) · Zbl 1230.54032
[28] Choudhury; Binayak, S; Konar, P; Rhoades, BE; Metiya, N, Fixed point theorems for generalized weakly contractive mappings, Nonlinear Anal, 74, 2116-2126, (2011) · Zbl 1218.54036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.