×

zbMATH — the first resource for mathematics

Oscillation and nonoscillation of second-order half-linear differential equations. (English) Zbl 1310.34044
J. Math. Sci., New York 191, No. 3, 377-387 (2013) and in Neliniĭni Kolyvannya 15, No. 3, 344-353 (2012).
The paper considers the problem of oscillation and non-oscillation of the second order half-linear differential equation \[ ({|{u'(t)}|}^{\alpha-1}u'(t))'+p(t){|{u'(t)}|}^{\alpha-1}u(t)=0, \] where \(\alpha>0\) is a constant and \(p\in C([0,+\infty),[0,+\infty))\) is an integrable function.
New oscillation and non-oscillation criteria that extend and improve some known results for second-order linear differential equations are given.

MSC:
34C10 Oscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R. P. Agarwal, S. R. Grace, and D. O’Regan, Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations, Kluwer, Dordrecht (2002). · Zbl 1091.34518
[2] R. P. Agarwal, S. R. Grace, and D. O’Regan, Oscillation Theory for Second Order Dynamic Equations, Taylor & Francis, London–New York (2003).
[3] O. Došlý and P. Rěehák, Half-Linear Differential Equations, North-Holland, Amsterdam (2005).
[4] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge University Press, Cambridge (1988).
[5] H. B. Hus and C. C. Yeh, ”Oscillation theorems for second-order half-linear differential equations,” Appl. Math. Lett., 9, No. 6, 71–77 (1996). · Zbl 0877.34027
[6] H. L. Hong, W. C. Lian, and C. C. Yeh, ”The oscillation of half-linear differential equations with an oscillatory coefficient,” Math. Comput. Model., 24, No. 7, 77–86 (1996). · Zbl 0924.34027 · doi:10.1016/0895-7177(96)00129-X
[7] N. Kandelaki, A. Lomtatidze, and D. Ugulava, ”On oscillation and nonoscillation of a second order half-linear equation,” Georg. Math. J., 7, No. 2, 329–346 (2000). · Zbl 0957.34032
[8] T. Kusano and Y. Norio, ”Non-oscillation theorems for a class of quasilinear differential equations of second order,” J. Math. Anal. Appl., 198, 115–127 (1995). · Zbl 0823.34039
[9] T. Kusano, Y. Naito, and A. Ogata, ”Strong oscillation and non-oscillation of quasilinear differential equations of second order,” Different. Equat. Dynam. Syst., 2, 1–10 (1994). · Zbl 0869.34031
[10] J. V. Manojlović, ”Oscillation criteria for second-order half-linear differential equations,” Math. Comput. Model., 30, 109–119 (1999). · Zbl 1042.34532 · doi:10.1016/S0895-7177(99)00151-X
[11] A. Lomtatidze, ”Oscillation and non-oscillation criteria for second-order linear differential equations,” Georg. Math. J., 4, No. 2, 129–138 (1997). · Zbl 0877.34029 · doi:10.1023/A:1022978000000
[12] H. J. Li and C. C. Yeh, ”Non-oscillation criteria for second-order half-linear differential equations,” Appl. Math. Lett., 8, No. 5, 63–70 (1995). · Zbl 0844.34028 · doi:10.1016/0893-9659(95)00068-2
[13] W. T. Li, ”Interval oscillation of second-order half-linear functional differential equations,” Appl. Math. Comput., 155, No. 2, 451–468 (2004). · Zbl 1061.34048 · doi:10.1016/S0096-3003(03)00790-2
[14] J. S. W. Wong, ”A non-oscillation theorem for Emden–Fowler equations,” J. Math. Anal. Appl., 274, No. 2, 746–754 (2002). · Zbl 1036.34039 · doi:10.1016/S0022-247X(02)00357-8
[15] J. S. W. Wong, ”Second order nonlinear forced oscillations, ”SIAM J. Math. Anal., 19, 667–675 (1988). · Zbl 0655.34023
[16] Q. R. Wang, ”Oscillation and asymptotics for second-order half-linear differential equations,” Appl. Math. Comput., 122, 253–266 (2001). · Zbl 1030.34031 · doi:10.1016/S0096-3003(00)00056-4
[17] X. J. Yang, ”Oscillation results for second-order half-linear differential equations,” Math. Comput. Model., 36, No. 4–5, 503–507 (2002). · Zbl 1035.34020 · doi:10.1016/S0895-7177(02)00179-6
[18] Yong Zhou, ”Oscillation and non-oscillation criteria for second order quasilinear difference equations,” J. Math. Anal. Appl., -303, 365–375 (2005). · Zbl 1068.39035 · doi:10.1016/j.jmaa.2004.06.060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.