×

zbMATH — the first resource for mathematics

Primary Feynman rules to calculate the \(\epsilon\)-dimensional integrand of any 1-loop amplitude. (English) Zbl 1309.81283
Summary: When using dimensional regularization/reduction the \(\epsilon\)-dimensional numerator of the 1-loop Feynman diagrams gives rise to rational contributions. I list the set of fundamental rules that allow the extraction of such terms at the integrand level in any theory containing scalars, vectors and fermions, such as the electroweak standard model, QCD and SUSY.

MSC:
81V05 Strong interaction, including quantum chromodynamics
81V22 Unified quantum theories
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
81T18 Feynman diagrams
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Bern, Z.; Dixon, LJ; Dunbar, DC; Kosower, DA, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys., B 425, 217, (1994)
[2] Bern, Z.; Dixon, LJ; Dunbar, DC; Kosower, DA, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys., B 435, 59, (1995)
[3] Britto, R.; Cachazo, F.; Feng, B., Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys., B 725, 275, (2005)
[4] Ossola, G.; Papadopoulos, CG; Pittau, R., Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys., B 763, 147, (2007)
[5] Forde, D., Direct extraction of one-loop integral coefficients, Phys. Rev., D 75, 125019, (2007)
[6] Ossola, G.; Papadopoulos, CG; Pittau, R., Cuttools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP, 03, 042, (2008)
[7] Berger, C.; etal., An automated implementation of on-shell methods for one-loop amplitudes, Phys. Rev., D 78, 036003, (2008)
[8] Giele, W.; Zanderighi, G., On the numerical evaluation of one-loop amplitudes: the gluonic case, JHEP, 06, 038, (2008)
[9] Ellis, R.; Melnikov, K.; Zanderighi, G., Generalized unitarity at work: first NLO QCD results for hadronic W + 3 jet production, JHEP, 04, 077, (2009)
[10] Hameren, A.; Papadopoulos, C.; Pittau, R., Automated one-loop calculations: a proof of concept, JHEP, 09, 106, (2009)
[11] Berger, C.; etal., Next-to-leading order QCD predictions for W + 3 jet distributions at hadron colliders, Phys. Rev., D 80, 074036, (2009)
[12] Hirschi, V.; etal., Automation of one-loop QCD corrections, JHEP, 05, 044, (2011)
[13] G. Bevilacqua et al., HELAC-NLO, arXiv:1110.1499 [INSPIRE].
[14] V. Hirschi, New developments in MadLoop, arXiv:1111.2708 [INSPIRE].
[15] G.P. Salam, Perturbative QCD for the LHC, PoS(ICHEP 2010)556 [arXiv:1103.1318] [INSPIRE].
[16] R. Ellis, Z. Kunszt, K. Melnikov and G. Zanderighi, One-loop calculations in quantum field theory: from Feynman diagrams to unitarity cuts, arXiv:1105.4319 [INSPIRE].
[17] Binoth, T.; Ossola, G.; Papadopoulos, C.; Pittau, R., NLO QCD corrections to tri-boson production, JHEP, 06, 082, (2008)
[18] Ellis, R.; Giele, W.; Kunszt, Z.; Melnikov, K.; Zanderighi, G., One-loop amplitudes for W + 3 jet production in hadron collisions, JHEP, 01, 012, (2009)
[19] Berger, C.; etal., Precise predictions for W + 3 jet production at hadron colliders, Phys. Rev. Lett., 102, 222001, (2009)
[20] Bredenstein, A.; Denner, A.; Dittmaier, S.; Pozzorini, S., NLO QCD corrections to \( pp → t\overline t b\overline b + X \) at the LHC, Phys. Rev. Lett., 103, 012002, (2009)
[21] Bevilacqua, G.; Czakon, M.; Papadopoulos, C.; Pittau, R.; Worek, M., Assault on the NLO wishlist: \( pp → t\overline t b\overline b \), JHEP, 09, 109, (2009)
[22] Bredenstein, A.; Denner, A.; Dittmaier, S.; Pozzorini, S., NLO QCD corrections to top anti-top bottom anti-bottom production at the LHC: 2. full hadronic results, JHEP, 03, 021, (2010)
[23] Bevilacqua, G.; Czakon, M.; Papadopoulos, C.; Worek, M., Dominant QCD backgrounds in Higgs boson analyses at the LHC: a study of \( pp → t\overline t + 2 \) jets at next-to-leading order, Phys. Rev. Lett., 104, 162002, (2010)
[24] SM and NLO Multileg Working Group collaboration, J. Andersen et al., The SM and NLO Multileg Working Group: summary report, arXiv:1003.1241 [INSPIRE].
[25] Melnikov, K.; Schulze, M., NLO QCD corrections to top quark pair production in association with one hard jet at hadron colliders, Nucl. Phys., B 840, 129, (2010)
[26] Berger, C.; etal., Precise predictions for W + 4 jet production at the large hadron collider, Phys. Rev. Lett., 106, 092001, (2011)
[27] Denner, A.; Dittmaier, S.; Kallweit, S.; Pozzorini, S., NLO QCD corrections to wwbb production at hadron colliders, Phys. Rev. Lett., 106, 052001, (2011)
[28] Bevilacqua, G.; Czakon, M.; Hameren, A.; Papadopoulos, CG; Worek, M., Complete off-shell effects in top quark pair hadroproduction with leptonic decay at next-to-leading order, JHEP, 02, 083, (2011)
[29] Melia, T.; Melnikov, K.; Rontsch, R.; Zanderighi, G., NLO QCD corrections for W\^{}{+}W\^{}{−} pair production in association with two jets at hadron colliders, Phys. Rev., D 83, 114043, (2011)
[30] Frederix, R.; etal., Scalar and pseudoscalar Higgs production in association with a top-antitop pair, Phys. Lett., B 701, 427, (2011)
[31] Campanario, F.; Englert, C.; Rauch, M.; Zeppenfeld, D., Precise predictions for Wγγ + jet production at hadron colliders, Phys. Lett., B 704, 515, (2011)
[32] Frederix, R.; etal., W and Z/γ∗ boson production in association with a bottom-antibottom pair, JHEP, 09, 061, (2011)
[33] K. Arnold et al., VBFNLO: a parton level Monte Carlo for processes with electroweak bosonsmanual for version 2.5.0, arXiv:1107.4038 [INSPIRE].
[34] H. Ita et al., Precise predictions for Z + 4 jets at hadron colliders, arXiv:1108.2229 [INSPIRE].
[35] Bevilacqua, G.; Czakon, M.; Papadopoulos, C.; Worek, M., Hadronic top-quark pair production in association with two jets at next-to-leading order QCD, Phys. Rev., D 84, 114017, (2011)
[36] R. Frederix et al., Four-lepton production at hadron colliders: aMC@NLO predictions with theoretical uncertainties, arXiv:1110.4738 [INSPIRE].
[37] R. Frederix et al., aMC@NLO predictions for Wjj production at the Tevatron, arXiv:1110.5502 [INSPIRE].
[38] Binoth, T.; Guillet, J.; Heinrich, G., Algebraic evaluation of rational polynomials in one-loop amplitudes, JHEP, 02, 013, (2007)
[39] Ossola, G.; Papadopoulos, CG; Pittau, R., On the rational terms of the one-loop amplitudes, JHEP, 05, 004, (2008)
[40] Bredenstein, A.; Denner, A.; Dittmaier, S.; Pozzorini, S., NLO QCD corrections to ttbb production at the LHC: 1. quark-antiquark annihilation, JHEP, 08, 108, (2008)
[41] Campanario, F., Towards pp → V V jj at NLO QCD: bosonic contributions to triple vector boson production plus jet, JHEP, 10, 070, (2011)
[42] Giele, WT; Kunszt, Z.; Melnikov, K., Full one-loop amplitudes from tree amplitudes, JHEP, 04, 049, (2008)
[43] Bern, Z.; Dixon, LJ; Kosower, DA, Bootstrapping multi-parton loop amplitudes in QCD, Phys. Rev., D 73, 065013, (2006)
[44] Badger, S.; Glover, E.; Risager, K., One-loop phi-MHV amplitudes using the unitarity bootstrap, JHEP, 07, 066, (2007)
[45] Badger, S., Direct extraction of one loop rational terms, JHEP, 01, 049, (2009)
[46] Draggiotis, P.; Garzelli, M.; Papadopoulos, C.; Pittau, R., Feynman rules for the rational part of the QCD 1-loop amplitudes, JHEP, 04, 072, (2009)
[47] Garzelli, M.; Malamos, I.; Pittau, R., Feynman rules for the rational part of the electroweak 1-loop amplitudes, JHEP, 01, 040, (2010)
[48] Garzelli, M.; Malamos, I.; Pittau, R., Feynman rules for the rational part of the electroweak 1-loop amplitudes in the R_{\(x\)}i gauge and in the unitary gauge, JHEP, 01, 029, (2011)
[49] Garzelli, M.; Malamos, I., R2SM: a package for the analytic computation of the R_{2} rational terms in the standard model of the electroweak interactions, Eur. Phys. J., C 71, 1605, (2011)
[50] Shao, H-S; Zhang, Y-J; Chao, K-T, Feynman rules for the rational part of the standard model one-loop amplitudes in the ’t Hooft-veltman γ_{5} scheme, JHEP, 09, 048, (2011)
[51] Ossola, G.; Papadopoulos, CG; Pittau, R., Numerical evaluation of six-photon amplitudes, JHEP, 07, 085, (2007)
[52] Signer, A.; Stöckinger, D., Using dimensional reduction for hadronic collisions, Nucl. Phys., B 808, 88, (2009)
[53] Stöckinger, D., Regularization by dimensional reduction: consistency, quantum action principle and supersymmetry, JHEP, 03, 076, (2005)
[54] Mastrolia, P.; Ossola, G.; Reiter, T.; Tramontano, F., Scattering amplitudes from unitarity-based reduction algorithm at the integrand-level, JHEP, 08, 080, (2010)
[55] G. Cullen et al., Automation of one-loop calculations with GoSam: present status and future outlook, arXiv:1111.3339 [INSPIRE].
[56] Passarino, G.; Veltman, M., One loop corrections for e\^{}{+}e\^{}{−} annihilation into μ\^{}{+}μ\^{}{−} in the Weinberg model, Nucl. Phys., B 160, 151, (1979)
[57] Xiao, Z.; Yang, G.; Zhu, C-J, The rational part of QCD amplitudes. I. the general formalism, Nucl. Phys., B 758, 1, (2006)
[58] Badger, S.; Sattler, R.; Yundin, V., One-loop helicity amplitudes for \( t\overline t \) production at hadron colliders, Phys. Rev., D 83, 074020, (2011)
[59] Badger, S.; Biedermann, B.; Uwer, P., Ngluon: a package to calculate one-loop multi-gluon amplitudes, Comput. Phys. Commun., 182, 1674, (2011)
[60] Boels, R.; Schwinn, C., CSW rules for a massive scalar, Phys. Lett., B 662, 80, (2008)
[61] Nigel Glover, E.; Williams, C., One-loop gluonic amplitudes from single unitarity cuts, JHEP, 12, 067, (2008)
[62] H. Elvang, D.Z. Freedman and M. Kiermaier, Integrands for QCD rational terms and N = 4 SYM from massive CSW rules, arXiv:1111.0635 [INSPIRE].
[63] Christensen, ND; Duhr, C., Feynrules — Feynman rules made easy, Comput. Phys. Commun., 180, 1614, (2009)
[64] F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering amplitudes with open loops, arXiv:1111.5206 [INSPIRE].
[65] Denner, A., Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortschr. Phys., 41, 307, (1993)
[66] J. Rosiek, Complete set of Feynman rules for the MSSM: erratum, hep-ph/9511250 [INSPIRE].
[67] Denner, A.; Eck, H.; Hahn, O.; Kublbeck, J., Feynman rules for fermion number violating interactions, Nucl. Phys., B 387, 467, (1992)
[68] Denner, A.; Eck, H.; Hahn, O.; Kublbeck, J., Compact Feynman rules for Majorana fermions, Phys. Lett., B 291, 278, (1992)
[69] A. Signer, Helicity method for next-to-leading order corrections in QCD, Ph.D. Thesis, ETH, Zürich Switzerland (1995).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.