×

Primary Feynman rules to calculate the \(\epsilon\)-dimensional integrand of any 1-loop amplitude. (English) Zbl 1309.81283

Summary: When using dimensional regularization/reduction the \(\epsilon\)-dimensional numerator of the 1-loop Feynman diagrams gives rise to rational contributions. I list the set of fundamental rules that allow the extraction of such terms at the integrand level in any theory containing scalars, vectors and fermions, such as the electroweak standard model, QCD and SUSY.

MSC:

81V05 Strong interaction, including quantum chromodynamics
81V22 Unified quantum theories
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
81T18 Feynman diagrams
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys.B 425 (1994) 217 [hep-ph/9403226] [INSPIRE]. · Zbl 1049.81644
[2] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys.B 435 (1995) 59 [hep-ph/9409265] [INSPIRE].
[3] R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys.B 725 (2005) 275 [hep-th/0412103] [INSPIRE]. · Zbl 1178.81202
[4] G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys.B 763 (2007) 147 [hep-ph/0609007] [INSPIRE]. · Zbl 1116.81067
[5] D. Forde, Direct extraction of one-loop integral coefficients, Phys. Rev.D 75 (2007) 125019 [arXiv:0704.1835] [INSPIRE].
[6] G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP03 (2008) 042 [arXiv:0711.3596] [INSPIRE].
[7] C. Berger et al., An automated implementation of on-shell methods for one-loop amplitudes, Phys. Rev.D 78 (2008) 036003 [arXiv:0803.4180] [INSPIRE].
[8] W. Giele and G. Zanderighi, On the numerical evaluation of one-loop amplitudes: the gluonic case, JHEP06 (2008) 038 [arXiv:0805.2152] [INSPIRE].
[9] R. Ellis, K. Melnikov and G. Zanderighi, Generalized unitarity at work: first NLO QCD results for hadronic W + 3 jet production, JHEP04 (2009) 077 [arXiv:0901.4101] [INSPIRE].
[10] A. van Hameren, C. Papadopoulos and R. Pittau, Automated one-loop calculations: a proof of concept, JHEP09 (2009) 106 [arXiv:0903.4665] [INSPIRE].
[11] C. Berger et al., Next-to-leading order QCD predictions for W +3 jet distributions at hadron colliders, Phys. Rev.D 80 (2009) 074036 [arXiv:0907.1984] [INSPIRE].
[12] V. Hirschi et al., Automation of one-loop QCD corrections, JHEP05 (2011) 044 [arXiv:1103.0621] [INSPIRE]. · Zbl 1296.81138
[13] G. Bevilacqua et al., HELAC-NLO, arXiv:1110.1499 [INSPIRE].
[14] V. Hirschi, New developments in MadLoop, arXiv:1111.2708 [INSPIRE].
[15] G.P. Salam, Perturbative QCD for the LHC, PoS(ICHEP 2010)556 [arXiv:1103.1318] [INSPIRE].
[16] R. Ellis, Z. Kunszt, K. Melnikov and G. Zanderighi, One-loop calculations in quantum field theory: from Feynman diagrams to unitarity cuts, arXiv:1105.4319 [INSPIRE].
[17] T. Binoth, G. Ossola, C. Papadopoulos and R. Pittau, NLO QCD corrections to tri-boson production, JHEP06 (2008) 082 [arXiv:0804.0350] [INSPIRE].
[18] R. Ellis, W. Giele, Z. Kunszt, K. Melnikov and G. Zanderighi, One-loop amplitudes for W + 3 jet production in hadron collisions, JHEP01 (2009) 012 [arXiv:0810.2762] [INSPIRE].
[19] C. Berger et al., Precise predictions for W +3 jet production at hadron colliders, Phys. Rev. Lett.102 (2009) 222001 [arXiv:0902.2760] [INSPIRE].
[20] A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to \(pp \to t\overline t b\overline b + X\) at the LHC, Phys. Rev. Lett.103 (2009) 012002 [arXiv:0905.0110] [INSPIRE].
[21] G. Bevilacqua, M. Czakon, C. Papadopoulos, R. Pittau and M. Worek, Assault on the NLO wishlist:\( pp \to t\overline t b\overline b \), JHEP09 (2009) 109 [arXiv:0907.4723] [INSPIRE].
[22] A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to top anti-top bottom anti-bottom production at the LHC: 2. Full hadronic results, JHEP03 (2010) 021 [arXiv:1001.4006] [INSPIRE]. · Zbl 1271.81172
[23] G. Bevilacqua, M. Czakon, C. Papadopoulos and M. Worek, Dominant QCD backgrounds in Higgs boson analyses at the LHC: a study of \(pp \to t\overline t + 2\) jets at next-to-leading order, Phys. Rev. Lett.104 (2010) 162002 [arXiv:1002.4009] [INSPIRE].
[24] SM and NLO Multileg Working Group collaboration, J. Andersen et al., The SM and NLO Multileg Working Group: summary report, arXiv:1003.1241 [INSPIRE].
[25] K. Melnikov and M. Schulze, NLO QCD corrections to top quark pair production in association with one hard jet at hadron colliders, Nucl. Phys.B 840 (2010) 129 [arXiv:1004.3284] [INSPIRE]. · Zbl 1206.81145
[26] C. Berger et al., Precise predictions for W + 4 jet production at the Large Hadron Collider, Phys. Rev. Lett.106 (2011) 092001 [arXiv:1009.2338] [INSPIRE].
[27] A. Denner, S. Dittmaier, S. Kallweit and S. Pozzorini, NLO QCD corrections to WWbb production at hadron colliders, Phys. Rev. Lett.106 (2011) 052001 [arXiv:1012.3975] [INSPIRE].
[28] G. Bevilacqua, M. Czakon, A. van Hameren, C.G. Papadopoulos and M. Worek, Complete off-shell effects in top quark pair hadroproduction with leptonic decay at next-to-leading order, JHEP02 (2011) 083 [arXiv:1012.4230] [INSPIRE].
[29] T. Melia, K. Melnikov, R. Rontsch and G. Zanderighi, NLO QCD corrections for W+W−pair production in association with two jets at hadron colliders, Phys. Rev.D 83 (2011) 114043 [arXiv:1104.2327] [INSPIRE].
[30] R. Frederix et al., Scalar and pseudoscalar Higgs production in association with a top-antitop pair, Phys. Lett.B 701 (2011) 427 [arXiv:1104.5613] [INSPIRE].
[31] F. Campanario, C. Englert, M. Rauch and D. Zeppenfeld, Precise predictions for Wγγ + jet production at hadron colliders, Phys. Lett.B 704 (2011) 515 [arXiv:1106.4009] [INSPIRE].
[32] R. Frederix et al., W and Z/γ∗ boson production in association with a bottom-antibottom pair, JHEP09 (2011) 061 [arXiv:1106.6019] [INSPIRE].
[33] K. Arnold et al., VBFNLO: a parton level Monte Carlo for processes with electroweak bosons — manual for version 2.5.0, arXiv:1107.4038 [INSPIRE].
[34] H. Ita et al., Precise predictions for Z + 4 jets at hadron colliders, arXiv:1108.2229 [INSPIRE].
[35] G. Bevilacqua, M. Czakon, C. Papadopoulos and M. Worek, Hadronic top-quark pair production in association with two jets at next-to-leading order QCD, Phys. Rev.D 84 (2011) 114017 [arXiv:1108.2851] [INSPIRE].
[36] R. Frederix et al., Four-lepton production at hadron colliders: aMC@NLO predictions with theoretical uncertainties, arXiv:1110.4738 [INSPIRE].
[37] R. Frederix et al., aMC@NLO predictions for Wjj production at the Tevatron, arXiv:1110.5502 [INSPIRE].
[38] T. Binoth, J. Guillet and G. Heinrich, Algebraic evaluation of rational polynomials in one-loop amplitudes, JHEP02 (2007) 013 [hep-ph/0609054] [INSPIRE].
[39] G. Ossola, C.G. Papadopoulos and R. Pittau, On the rational terms of the one-loop amplitudes, JHEP05 (2008) 004 [arXiv:0802.1876] [INSPIRE].
[40] A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to ttbb production at the LHC: 1. Quark-antiquark annihilation, JHEP08 (2008) 108 [arXiv:0807.1248] [INSPIRE].
[41] F. Campanario, Towards pp → V V jj at NLO QCD: bosonic contributions to triple vector boson production plus jet, JHEP10 (2011) 070 [arXiv:1105.0920] [INSPIRE]. · Zbl 1303.81208
[42] W.T. Giele, Z. Kunszt and K. Melnikov, Full one-loop amplitudes from tree amplitudes, JHEP04 (2008) 049 [arXiv:0801.2237] [INSPIRE]. · Zbl 1246.81170
[43] Z. Bern, L.J. Dixon and D.A. Kosower, Bootstrapping multi-parton loop amplitudes in QCD, Phys. Rev.D 73 (2006) 065013 [hep-ph/0507005] [INSPIRE].
[44] S. Badger, E. Glover and K. Risager, One-loop phi-MHV amplitudes using the unitarity bootstrap, JHEP07 (2007) 066 [arXiv:0704.3914] [INSPIRE].
[45] S. Badger, Direct extraction of one loop rational terms, JHEP01 (2009) 049 [arXiv:0806.4600] [INSPIRE]. · Zbl 1243.81219
[46] P. Draggiotis, M. Garzelli, C. Papadopoulos and R. Pittau, Feynman rules for the rational part of the QCD 1-loop amplitudes, JHEP04 (2009) 072 [arXiv:0903.0356] [INSPIRE].
[47] M. Garzelli, I. Malamos and R. Pittau, Feynman rules for the rational part of the electroweak 1-loop amplitudes, JHEP01 (2010) 040 [Erratum ibid.10 (2010) 097] [arXiv:0910.3130] [INSPIRE]. · Zbl 1269.81214
[48] M. Garzelli, I. Malamos and R. Pittau, Feynman rules for the rational part of the electroweak 1-loop amplitudes in the Rxi gauge and in the unitary gauge, JHEP01 (2011) 029 [arXiv:1009.4302] [INSPIRE]. · Zbl 1214.81328
[49] M. Garzelli and I. Malamos, R2SM: a package for the analytic computation of the R2rational terms in the standard model of the electroweak interactions, Eur. Phys. J.C 71 (2011) 1605 [arXiv:1010.1248] [INSPIRE].
[50] H.-S. Shao, Y.-J. Zhang and K.-T. Chao, Feynman rules for the rational part of the standard model one-loop amplitudes in the ’t Hooft-Veltman γ5scheme, JHEP09 (2011) 048 [arXiv:1106.5030] [INSPIRE]. · Zbl 1301.81360
[51] G. Ossola, C.G. Papadopoulos and R. Pittau, Numerical evaluation of six-photon amplitudes, JHEP07 (2007) 085 [arXiv:0704.1271] [INSPIRE].
[52] A. Signer and D. Stöckinger, Using dimensional reduction for hadronic collisions, Nucl. Phys.B 808 (2009) 88 [arXiv:0807.4424] [INSPIRE]. · Zbl 1192.81404
[53] D. Stöckinger, Regularization by dimensional reduction: consistency, quantum action principle and supersymmetry, JHEP03 (2005) 076 [hep-ph/0503129] [INSPIRE].
[54] P. Mastrolia, G. Ossola, T. Reiter and F. Tramontano, Scattering amplitudes from unitarity-based reduction algorithm at the integrand-level, JHEP08 (2010) 080 [arXiv:1006.0710] [INSPIRE]. · Zbl 1290.81151
[55] G. Cullen et al., Automation of one-loop calculations with GoSam: present status and future outlook, arXiv:1111.3339 [INSPIRE].
[56] G. Passarino and M. Veltman, One loop corrections for e+e−annihilation into μ+μ−in the Weinberg model, Nucl. Phys.B 160 (1979) 151 [INSPIRE].
[57] Z. Xiao, G. Yang and C.-J. Zhu, The rational part of QCD amplitudes. I. The general formalism, Nucl. Phys.B 758 (2006) 1 [hep-ph/0607015] [INSPIRE].
[58] S. Badger, R. Sattler and V. Yundin, One-loop helicity amplitudes for \(t\overline t\) production at hadron colliders, Phys. Rev.D 83 (2011) 074020 [arXiv:1101.5947] [INSPIRE].
[59] S. Badger, B. Biedermann and P. Uwer, NGluon: a package to calculate one-loop multi-gluon amplitudes, Comput. Phys. Commun.182 (2011) 1674 [arXiv:1011.2900] [INSPIRE]. · Zbl 1262.81102
[60] R. Boels and C. Schwinn, CSW rules for a massive scalar, Phys. Lett.B 662 (2008) 80 [arXiv:0712.3409] [INSPIRE]. · Zbl 1282.81136
[61] E. Nigel Glover and C. Williams, One-loop gluonic amplitudes from single unitarity cuts, JHEP12 (2008) 067 [arXiv:0810.2964] [INSPIRE]. · Zbl 1329.81283
[62] H. Elvang, D.Z. Freedman and M. Kiermaier, Integrands for QCD rational terms and N = 4 SYM from massive CSW rules, arXiv:1111.0635 [INSPIRE]. · Zbl 1397.81432
[63] N.D. Christensen and C. Duhr, FeynRules — Feynman rules made easy, Comput. Phys. Commun.180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].
[64] F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering amplitudes with open loops, arXiv:1111.5206 [INSPIRE].
[65] A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortschr. Phys.41 (1993) 307 [arXiv:0709.1075] [INSPIRE].
[66] J. Rosiek, Complete set of Feynman rules for the MSSM: erratum, hep-ph/9511250 [INSPIRE]. · Zbl 1344.81026
[67] A. Denner, H. Eck, O. Hahn and J. Kublbeck, Feynman rules for fermion number violating interactions, Nucl. Phys.B 387 (1992) 467 [INSPIRE].
[68] A. Denner, H. Eck, O. Hahn and J. Kublbeck, Compact Feynman rules for Majorana fermions, Phys. Lett.B 291 (1992) 278 [INSPIRE].
[69] A. Signer, Helicity method for next-to-leading order corrections in QCD, Ph.D. Thesis, ETH, Zürich Switzerland (1995).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.