×

zbMATH — the first resource for mathematics

Resonance-driven oscillations in a flexible-channel flow with fixed upstream flux and a long downstream rigid segment. (English) Zbl 1309.76236
Summary: Flow driven through a planar channel having a finite-length membrane inserted in one wall can be unstable to self-excited oscillations. In a recent study [the authors, J. Fluid Mech. 723, 706–733 (2013; Zbl 1287.76253)], we identified a mechanism of instability arising when the inlet flux and outlet pressure are held constant, and the rigid segment of the channel downstream of the membrane is sufficiently short to have negligible influence on the resulting oscillations. Here we identify an independent mechanism of instability that is intrinsically coupled to flow in the downstream rigid segment, which becomes prominent when the downstream segment is much longer than the membrane. Using a spatially one-dimensional model of the system, we perform a three-parameter unfolding of a degenerate bifurcation point having four zero eigenvalues. Our analysis reveals how instability is promoted by a 1:1 resonant interaction between two modes, with the resulting oscillations described by a fourth-order amplitude equation. This predicts the existence of saturated sawtooth oscillations, which we reproduce in full Navier-Stokes simulations of the same system.

MSC:
76Z05 Physiological flows
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1002/cnm.1238 · Zbl 1419.76017
[2] DOI: 10.1017/S0022112009992916 · Zbl 1189.76132
[3] DOI: 10.1017/S0022112010003277 · Zbl 1205.76077
[4] DOI: 10.1017/jfm.2012.496 · Zbl 1284.76150
[5] Pedley, Trans. ASME: J. Biomech. Engng 114 pp 60– (1992)
[6] DOI: 10.1098/rspa.2009.0328 · Zbl 1195.76450
[7] DOI: 10.1137/0138005 · Zbl 0472.70024
[8] DOI: 10.1017/S002211200000152X · Zbl 0993.76018
[9] DOI: 10.1146/annurev-fluid-122109-160703 · Zbl 1299.76319
[10] DOI: 10.1017/S0022112098001062 · Zbl 0924.76023
[11] DOI: 10.1017/S0022112096000286 · Zbl 0875.76264
[12] DOI: 10.1017/S0022112006002655 · Zbl 1177.76083
[13] DOI: 10.1017/jfm.2011.254 · Zbl 1250.76095
[14] DOI: 10.1017/jfm.2012.32 · Zbl 1250.76067
[15] DOI: 10.1146/annurev.fluid.36.050802.121918 · Zbl 1081.76063
[16] Knowlton, J. Physiol. 44 pp 206– (1912)
[17] DOI: 10.1063/1.4759493 · Zbl 06429750
[18] DOI: 10.1017/S002211200300394X · Zbl 1049.76015
[19] DOI: 10.1016/S0889-9746(02)00112-3
[20] DOI: 10.1016/j.jfluidstructs.2006.07.005
[21] DOI: 10.1016/0889-9746(92)90043-3
[22] DOI: 10.1017/jfm.2013.97 · Zbl 1287.76253
[23] DOI: 10.1017/S0022112009992904 · Zbl 1189.76133
[24] DOI: 10.1098/rspa.2009.0641 · Zbl 1211.74119
[25] DOI: 10.1016/j.euromechflu.2009.03.002 · Zbl 1167.76329
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.