Barbato, David; Morandin, Francesco; Romito, Marco Global regularity for a slightly supercritical hyperdissipative Navier-Stokes system. (English) Zbl 1309.76053 Anal. PDE 7, No. 8, 2009-2027 (2014). Summary: We prove global existence of smooth solutions for a slightly supercritical hyperdissipative Navier-Stokes under the optimal condition on the correction to the dissipation. This proves a conjecture formulated by T. Tao [Anal. PDE 2, No. 3, 361–366 (2009; Zbl 1190.35177)]. Cited in 2 ReviewsCited in 19 Documents MSC: 76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids 76D05 Navier-Stokes equations for incompressible viscous fluids 35Q30 Navier-Stokes equations 35Q35 PDEs in connection with fluid mechanics Keywords:Navier-Stokes; dyadic model; global existence; slightly supercritical Navier-Stokes PDF BibTeX XML Cite \textit{D. Barbato} et al., Anal. PDE 7, No. 8, 2009--2027 (2014; Zbl 1309.76053) Full Text: DOI arXiv