×

zbMATH — the first resource for mathematics

Buckling of a growing tissue and the emergence of two-dimensional patterns. (English) Zbl 1308.92018
Summary: The process of biological growth and the associated generation of residual stress has previously been considered as a driving mechanism for tissue buckling and pattern selection in numerous areas of biology. Here, we develop a two-dimensional thin plate theory to simulate the growth of cultured intestinal epithelial cells on a deformable substrate, with the goal of elucidating how a tissue engineer might best recreate the regular array of invaginations (crypts of Lieberkühn) found in the wall of the mammalian intestine. We extend the standard von Kármán equations to incorporate inhomogeneity in the plate’s mechanical properties and surface stresses applied to the substrate by cell proliferation. We determine numerically the configurations of a homogeneous plate under uniform cell growth, and show how tethering to an underlying elastic foundation can be used to promote higher-order buckled configurations. We then examine the independent effects of localised softening of the substrate and spatial patterning of cellular growth, demonstrating that (within a two-dimensional framework, and contrary to the predictions of one-dimensional models) growth patterning constitutes a more viable mechanism for control of crypt distribution than does material inhomogeneity.

MSC:
92C15 Developmental biology, pattern formation
Software:
Chaste; Matlab
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Green, P.; Steele, C.; Rennich, S., Phyllotactic patterns: a biophysical mechanism for their origin, Ann. Bot., 77, 515, (1996)
[2] Steele, C., Shell stability related to pattern formation in plants, J. Appl. Mech., 67, 237, (2000) · Zbl 1110.74688
[3] Dumais, J., Can mechanics control pattern formation in plants?, Curr. Opin. Plant Biol., 10, 58, (2007)
[4] Efimenko, K.; Rackaitis, M.; Manias, E.; Vaziri, A.; Mahadevan, L.; Genzer, J., Nested self-similar wrinkling patterns in skins, Nature Mater., 4, 293, (2005)
[5] Richman, D.; Stewart, R.; Hutchinson, J.; Caviness, V. J., Mechanical model of brain convolutional development, Science, 189, 18, (1975)
[6] Arai, T.; Kino, I., Morphometrical and cell kinetic studies of normal human colorectal mucosa: comparison between the proximal and distal large intestine, Acta Pathologica Japonica, 39, 11, 725, (1989)
[7] Crosnier, C.; Stamataki, D.; Lewis, J., Organizing cell renewal in the intestine: stem cells, signals and combinatorial control, Nature, 7, 349, (2006)
[8] Barker, N.; van de Wetering, M.; Clevers, H., The intestinal stem cell, Genes Dev., 22, 1856, (2008)
[9] Ben Amar, M.; Jia, F., Anisotropic growth shapes intestinal tissues during embryogenesis, PNAS, 110, 10525, (2013)
[10] Basan, M.; Joanny, J.-F.; Prost, J.; Risler, T., Undulation instability of epithelial tissues, PRL, 106, 158101, (2011)
[11] Zhang, L.; Lander, A.; Nie, Q., A reaction-diffusion mechanism influences cell lineage progression as a basis for formation, regeneration, and stability of intestinal crypts, BMC Syst. Biol., 6, 93, (2012)
[12] Karam, S., Lineage commitment and maturation of epithelial cells in the gut, Front. Biosci., 4, 286, (1999)
[13] Ross, M.; Kaye, G.; Pawlina, W., Histology: A text & atlas, (2003), Lippincott Williams & Wilkins Philadelphia
[14] Renehan, A.; O’Dwyer, S.; Haboubi, N.; Potten, C., Early cellular events in colorectal carcinogenesis, Colorectal Dis., 4, 76, (2002)
[15] Radtke, F.; Clevers, H., Self-renewal and cancer of the gut: two sides of a coin, Science, 307, 1904, (2005)
[16] van Leeuwen, I.; Byrne, H.; Jensen, O.; King, J., Crypt dynamics & colorectal cancer: advances in mathematical modelling, Cell Proliferation, 39, 157, (2006)
[17] Viney, M.; Bullock, A.; Day, M.; MacNeil, S., Co-culture of intestinal epithelial and stromal cells in 3d collagen-based environments, Regenerative Med., 4, 3, 397, (2009)
[18] Sato, T.; Vries, R.; Snippert, H.; van de Wetering, M.; Barker, N.; Strange, D.; van Es, J.; Abo, A.; Kujala, P.; Peters, P.; Clevers, H., Single lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche, Nature, 459, 262, (2009)
[19] Spence, J.; Mayhew, C.; Rankin, S.; Kuhar, M.; Vallance, J.; Tolle, K.; Hoskins, E.; Kalinachenko, V.; Wells, S.; Zorn, A.; Shroyer, N.; Wells, J., Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro, Nature, 470, 105, (2011)
[20] De Matteis, G.; Graudenzi, A.; Antoniotti, M., A review of spatial computational models for multi-cellular systems, with regard to intestinal crypts and colorectal cancer development, J. Math. Biol., 66, 7, 1409, (2013) · Zbl 1275.37039
[21] Loeffler, M.; Stein, R.; Wichmann, H.; Potten, C.; Kaur, P.; Chwalinski, S., Intestinal crypt proliferation. I. A comprehensive model of steady-state proliferation in the crypt, Cell Tissue Kinet., 19, (1986), 627-245
[22] Loeffler, M.; Potten, C.; Paulus, U.; Glatzer, J.; Chwalinski, S., Intestinal crypt proliferation. II. computer modelling of mitotic index data provides further evidence for lateral and vertical cell migration in the absence of mitotic activity, Cell Tissue Kinet., 19, 247, (1988)
[23] Meineke, F.; Potten, C.; Loeffler, M., Cell migration and organization in the intestinal crypt using a lattice-free model, Cell Proliferation, 34, 253, (2001)
[24] van Leeuwen, I.; Mirams, G.; Walter, A.; Fletcher, A.; Murray, P.; Osbourne, J.; Varma, S.; Young, S.; Cooper, J.; Doyle, B.; Pitt-Francis, J.; Momtahan, L.; Pathmanathan, P.; Whiteley, J.; Chapman, S.; Gavaghan, D.; Jensen, O.; King, J.; Maini, P.; Waters, S.; Byrne, H., An integrative computational model for intestinal tissue renewal, Cell Proliferation, 42, 617, (2009)
[25] Osborne, J.; Walter, A.; Kershaw, S.; Mirams, G.; Fletcher, A.; Pathmanathan, P.; Gavaghan, D.; Jensen, O.; Maini, P.; Byrne, H., A hybrid approach to multiscale modelling of cancer, Philos. Trans. R. Soc. A, 368, 1930, 5013, (2010) · Zbl 1211.37113
[26] Drasdo, D., Buckling instabilities of one-layered growing tissues, Phys. Rev. Lett., 84, 4244, (2000)
[27] Edwards, C.; Chapman, S., Biomechanical modelling of colorectal crypt budding & fission, Bull. Math. Biol., 69, 1927, (2007) · Zbl 1298.92048
[28] Buske, P.; Przybilla, J.; Loeffler, M.; Sachs, N.; Sato, T.; Clevers, H.; Galle, J., On the biomechanics of stem cell niche formation in the gut - modelling growing organoids, FEBS J., 279, 18, 3475, (2012)
[29] Hannezo, E.; Prost, J.; Joanny, J., Instabilities of monolayered epithelia: shape and structure of villi and crypts, Phys. Rev. Lett., 107, 7, 078104-5, (2011)
[30] Nelson, M.; Howard, D.; Jensen, O.; King, J.; Rose, F.; Waters, S., Growth-induced buckling of an epithelial layer, Biomech. Mod. Mechanobiol., 10, 6, 883, (2011)
[31] Thompson, D., On growth and form, (1942), Cambridge University Press Cambridge
[32] Taber, L., Biomechanics of growth, remodeling and morphogenesis, Appl. Mech. Rev., 48, 487, (1995)
[33] Cox, R.; Peacock, M., The velocity field of growing ear cartlidge, J. Anat., 126, 555, (1978)
[34] Cox, R.; Peacock, M., The growth of elastic cartlidge, J. Anat., 128, 207, (1979)
[35] R. Skalak, Growth as a finite displacement field, in: Proceedings of the IUTAM Symposium on Finite Elasticity: Held at Lehigh University, Bethlehem, PA, USA, August 10-15, 1980. · Zbl 0543.73128
[36] Rodriguez, E.; Hoger, A.; McCulloch, A., Stress-dependent finite growth in soft elastic tissues, J. Biomech., 27, 455, (1994)
[37] Skalak, R.; Zargaryan, S.; Jain, R.; Netti, P.; Hoger, A., Compatibility and the genesis of residual stress by volumetric growth, J. Math. Biol., 34, 8, 889, (1996) · Zbl 0858.92005
[38] Humphrey, J., Continuum biomechanics of soft biological tissues, Proc. R. Soc. Lond. A, 459, 3, (2003) · Zbl 1116.74385
[39] Goriely, A.; Robertson-Tessi, M.; Tabor, M.; Vandiver, R., Elastic growth models, Appl. Optim., 102, 1, (2008) · Zbl 1382.92184
[40] von Kármán, T., Festigkeitsprobleme im maschinenbau, Encyklopädie der Mathematischen Wissenschaften, 311, (1910) · JFM 41.0907.02
[41] von Kármán, T., The engineer grapples with nonlinear problems, Bull. Am. Math. Soc., 46, 8, 615, (1940) · JFM 66.0985.04
[42] Howell, P.; Kozyreff, G.; Ockendon, J., Applied solid mechanics, (2009), Cambridge University Press · Zbl 1153.74003
[43] Pamplona, D.; Calladine, C., The mechanics of axially symmetric liposomes, J. Biomech. Eng., 115, 149, (1993)
[44] Parker, K.; Winlove, C., The deformation of spherical vesicles with permeable, constant-area membranes: application to the red blood cell, Biophys. J., 77, 3096, (1999)
[45] Preston, S.; Jensen, O.; Richardson, G., Buckling of an axisymmetric vesicle under compression: the effects of resistance to shear, Quart. J. Mech. Appl. Math., 61, 1, 1, (2008) · Zbl 1135.74016
[46] Reboux, S.; Richardson, G.; Jensen, O., An asymptotic analysis of the buckling of a highly shear-resistant vesicle, Eur. J. Appl. Math., 20, 6, 479, (2009) · Zbl 1406.74257
[47] Dervaux, J.; Ben Amar, M., Localized growth of layered tissues, IMA J. Appl. Math., 75, 571, (2010) · Zbl 1425.74322
[48] Audoly, B.; Boudaoud, A., Buckling of a stiff film bound to a compliant substrate - part I: formulation, linear stability of cylindrical patterns, secondary bifurcations, J. Mech. Phys. Solids, 56, 2401, (2008) · Zbl 1171.74349
[49] Sultan, E.; Boudaoud, A., The buckling of a swollen thin gel layer bound to a compliant substrate, J. Appl. Mech., 75, 051002-1, (2008)
[50] Coman, C., Localized elastic buckling: non-linearities versus inhomogeneities, IMA J. Appl. Math., 75, 461, (2010) · Zbl 1375.74037
[51] Bilbao, S., A family of conservative finite difference schemes for the dynamical von karman plate equations, Numer. Methods Partial Differ. Equ., 24, 1, 193, (2008) · Zbl 1128.74048
[52] L. Trefethen, Spectral methods in Matlab, SIAM, Philadelphia, 2000.
[53] Leriche, E.; Labrosse, G., Stokes eigenmodes in square domain and the stream function-vorticity correlation, J. Comput. Phys., 200, 489, (2004) · Zbl 1115.76319
[54] Hoyle, R., Pattern formation: an introduction to methods, (2006), Cambridge University Press · Zbl 1087.00001
[55] Wells, R.; Discher, D.; elasticity, Matrix; tension, cytoskeletal, And TGF-\(\beta\): the insoluble and soluble meet, Sci. Signalling, 1, 10, (2008)
[56] Avery, A.; Paraskeva, C.; Hall, P.; Flanders, K.; Sporn, M.; Moorghen, M., TGF-\(\beta\) expression in the human colon: differential immunostaining along crypt epithelium, Br. J. Cancer, 68, 137, (1993)
[57] Lee, M.; Dunn, J.; Wu, B., Scaffold fabrication by indirect three-dimensional printing, Biomaterials, 26, 20, 4281, (2005)
[58] Wang, L.; Murthy, S.; Fowle, W.; Barabino, G.; Carrier, R., Influence of micro-well biomimetic topography on intestinal epithelial caco-2 cell phenotype, Biomaterials, 30, 36, 6825, (2009)
[59] M. Nelson, Biomechanical modelling of colorectal crypt formation and in-vitro replication, Ph.D. thesis, University of Nottingham. 2010.
[60] Brush, D.; Almroth, B., Buckling of bars, plates and shells, (1975), McGraw-Hill New York · Zbl 0352.73040
[61] Arfken, G.; Webber, H., Mathematical methods for physicists, (2005), Elsevier
[62] Edwards, C.; Schwarz, U., Force localization in contracting cell layers, Phys. Rev. Lett., 107, 128101, 5, (2011)
[63] Dervaux, J.; Ciarletta, P.; Ben Amar, M., Morphogenesis of thin hyperelastic plates: a constitutive theory of biological growth in the Föppl-von Kármán limit, J. Mech. Phys. Solids, 57, 458, (2009) · Zbl 1170.74354
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.