zbMATH — the first resource for mathematics

Scaling limits and critical behaviour of the 4-dimensional \(n\)-component \(|\varphi|^4\) spin model. (English) Zbl 1308.82026
Summary: We consider the \(n\)-component \(|\varphi|^4\) spin model on \(\mathbb Z^4\), for all \(n\geq 1\), with small coupling constant. We prove that the susceptibility has a logarithmic correction to mean field scaling, with exponent \(\frac{n+2}{n+8}\) for the logarithm. We also analyse the asymptotic behaviour of the pressure as the critical point is approached, and prove that the specific heat has fractional logarithmic scaling for \(n =1,2,3\); double logarithmic scaling for \(n=4\); and is bounded when \(n>4\). In addition, for the model defined on the \(4\)-dimensional discrete torus, we prove that the scaling limit as the critical point is approached is a multiple of a Gaussian free field on the continuum torus, whereas, in the subcritical regime, the scaling limit is Gaussian white noise with intensity given by the susceptibility. The proofs are based on a rigorous renormalisation group method in the spirit of Wilson, developed in a companion series of papers to study the 4-dimensional weakly self-avoiding walk, and adapted here to the \(|\varphi|^4\) model.

82B28 Renormalization group methods in equilibrium statistical mechanics
82B27 Critical phenomena in equilibrium statistical mechanics
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
60K35 Interacting random processes; statistical mechanics type models; percolation theory
Full Text: DOI arXiv
[1] Abdesselam, A, A complete renormalization group trajectory between two fixed points, Commun. Math. Phys., 276, 727-772, (2007) · Zbl 1194.81168
[2] Abdesselam, A., Chandra, A., Guadagni, G.: Rigorous quantum field theory functional integrals over the \(p\)-adics I: Anomalous dimensions. Preprint (2013). arXiv:1302.5971
[3] Adams, S., Kotecký, R., Müller, S.: Strict convexity of the surface tension for non-convex potentials, Preprint (2014) · Zbl 0429.60096
[4] Aizenman, M, Geometric analysis of \(φ ^4\) fields and Ising models, parts I and II, Commun. Math. Phys., 86, 1-48, (1982) · Zbl 0533.58034
[5] Aizenman, M; Fernández, R, On the critical behavior of the magnetization in high dimensional Ising models, J. Stat. Phys., 44, 393-454, (1986) · Zbl 0629.60106
[6] Aizenman, M; Fernández, R, Critical exponents for long-range interactions, Lett. Math. Phys., 16, 39-49, (1988) · Zbl 0658.60136
[7] Aizenman, M; Graham, R, On the renormalized coupling constant and the susceptibility in \(ϕ _4^4\) field theory and the Ising model in four dimensions, Nucl. Phys., B225, 261-288, (1983)
[8] Amit, D.J.: Field Theory, the Renormalization Group, and Critical Phenomena, 2nd edn. World Scientific, Singapore (1984)
[9] Aragão de Carvalho, C; Caracciolo, S; Fröhlich, J, Polymers and \(g|ϕ |^4\) theory in four dimensions, Nucl. Phys. B, 215, 209-248, (1983)
[10] Bałaban, T; Fröhlich, J (ed.), Ultraviolet stability in field theory. the \(ϕ ^4_3\) model, (1983), Boston
[11] Bałaban, T; O’Carroll, M, Low temperature properties for correlation functions in classical \(N\)-vector spin models, Commun. Math. Phys., 199, 493-520, (1999) · Zbl 0932.81024
[12] Bauerschmidt, R, A simple method for finite range decomposition of quadratic forms and Gaussian fields, Probab. Theory Relat. Fields, 157, 817-845, (2013) · Zbl 1347.60037
[13] Bauerschmidt, R., Brydges, D.C., Slade, G.: Critical two-point function of the 4-dimensional weakly self-avoiding walk. Preprint (2014). arXiv:1403.7268 · Zbl 1320.82031
[14] Bauerschmidt, R., Brydges, D.C., Slade, G.: Logarithmic correction for the susceptibility of the 4-dimensional weakly self-avoiding walk: a renormalisation group analysis. Preprint (2014). arXiv:1403.7422 · Zbl 1318.60049
[15] Bauerschmidt, R., Brydges, D.C., Slade, G.. Ptsoft: python program for perturbative renormalisation group calculation, Version 1.0 [Software]. Available at http://www.math.ubc.ca/ slade/ (2014)
[16] Bauerschmidt, R., Brydges, D.C., Slade, G.: A renormalisation group method. III. Perturbative analysis, Preprint (2014). arXiv:1403.7252 · Zbl 1319.82008
[17] Bauerschmidt, R., Brydges, D.C., Slade, G.: Structural stability of a dynamical system near a non-hyperbolic fixed point. To appear in Annales Henri Poincaré. doi:10.1007/s00023-014-0338-0 · Zbl 1347.37041
[18] Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press, London (1982) · Zbl 0538.60093
[19] Benfatto, G; Cassandro, M; Gallavotti, G; Nicolò, F; Oliveri, E; Presutti, E; Scacciatelli, E, Some probabilistic techniques in field theory, Commun. Math. Phys., 59, 143-166, (1978) · Zbl 0381.60096
[20] Benfatto, G., Gallavotti, G.: Renormalization Group. Princeton University Press, Princeton (1995) · Zbl 0830.58038
[21] Brézin, E; Guillou, JC; Zinn-Justin, J, Approach to scaling in renormalized perturbation theory, Phys. Rev. D, 8, 2418-2430, (1973)
[22] Brydges, D.C.: Lectures on the renormalisation group. In: Sheffield, S., Spencer, T. (eds.) Statistical Mechanics, pp. 7-93. American Mathematical Society, Providence (2009). IAS/Park City Mathematics Series, Volume 16 · Zbl 1186.82033
[23] Brydges, DC; Guadagni, G; Mitter, PK, Finite range decomposition of Gaussian processes, J. Stat. Phys., 115, 415-449, (2004) · Zbl 1157.82304
[24] Brydges, DC; Mitter, PK; Scoppola, B, Critical \(({Φ }^4)_{3,ϵ }\), Commun. Math. Phys., 240, 281-327, (2003) · Zbl 1053.81065
[25] Brydges, D.C., Slade, G.: A renormalisation group method. I. Gaussian integration and normed algebras, Preprint (2014). · Zbl 1317.82013
[26] Brydges, D.C., Slade, G.: A renormalisation group method. II. Approximation by local polynomials, Preprint (2014). arXiv:1403.7244 · Zbl 1317.82014
[27] Brydges, D.C., Slade, G.: A renormalisation group method. IV. Stability analysis, Preprint (2014). arXiv:1403.7253 · Zbl 1317.82016
[28] Brydges, D.C., Slade, G.: A renormalisation group method. V. A single renormalisation group step, Preprint (2014). arXiv:1403.7255 · Zbl 1317.82016
[29] Cardy, J.: Scaling and Renormalization in Statistical Physics. Cambridge University Press, Cambridge (1996). arXiv:1403.7256 · Zbl 0914.60002
[30] Chelkak, D; Smirnov, S, Universality in the 2D Ising model and conformal invariance of fermionic observables, Invent. Math., 189, 515-580, (2012) · Zbl 1257.82020
[31] Dimock, J, The renormalization group according to bałaban I. small fields, Rev. Math. Phys., 25, 1330010, (2013) · Zbl 1275.81068
[32] Domb, C: The Critical Point. A historical introduction to the modern theory of critical phenomena. Taylor and Francis, London (1996)
[33] Falco, P, Kosterlitz-thouless transition line for the two dimensional Coulomb gas, Commun. Math. Phys., 312, 559-609, (2012) · Zbl 1254.82012
[34] Falco, P: Critical exponents of the two dimensional Coulomb gas at the Berezinskii-Kosterlitz-Thouless transition. Preprint (2013) · Zbl 1236.82016
[35] Feldman, J., Knörrer, H., Trubowitz, E.: Fermionic Functional Integrals and the Renormalization Group. CRM Monograph Series, vol. 16. American Mathematical Society, Providence (2002) · Zbl 1257.82020
[36] Feldman, J; Knörrer, H; Trubowitz, E, A two dimensional Fermi liquid. part 1: overview, Commun. Math. Phys., 247, 1-47, (2004) · Zbl 1068.82004
[37] Feldman, J; Magnen, J; Rivasseau, V; Sénéor, R, Construction and Borel summability of infrared \(Φ ^4_4\) by a phase space expansion, Commun. Math. Phys., 109, 437-480, (1987)
[38] Fernández, R., Fröhlich, J., Sokal, A.D.: Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory. Springer, Berlin (1992) · Zbl 0761.60061
[39] Fisher, ME; Ma, S; Nickel, BG, Critical exponents for long-range interactions, Phys. Rev. Lett., 29, 917-920, (1972)
[40] Fröhlich, J, On the triviality of \(φ _d^4\) theories and the approach to the critical point in \(d \ge 4\) dimensions, Nucl. Phys., B200, 281-296, (1982)
[41] Fröhlich, J; Simon, B; Spencer, T, Infrared bounds, phase transitions, and continuous symmetry breaking, Commun. Math. Phys., 50, 79-95, (1976)
[42] Gawȩdzki, K; Kupiainen, A, A rigorous block spin approach to massless lattice theories, Commun. Math. Phys., 77, 31-64, (1980)
[43] Gawȩdzki, K; Kupiainen, A, Massless lattice \(φ ^4_4\) theory: rigorous control of a renormalizable asymptotically free model, Commun. Math. Phys., 99, 199-252, (1985)
[44] Gawȩdzki, K., Kupiainen, A.: Asymptotic freedom beyond perturbation theory. In: Osterwalder, K., Stora, R. (eds.), Critical Phenomena, Random Systems, Gauge Theories, Amsterdam, (1986). North-Holland. Les Houches (1984)
[45] Gennes, PG, Exponents for the excluded volume problem as derived by the Wilson method, Phys. Lett., A38, 339-340, (1972)
[46] Giuliani, A; Mastropietro, V; Porta, M, Universality of conductivity in interacting graphene, Commun. Math. Phys., 311, 317-355, (2012) · Zbl 1250.82017
[47] Glimm, J., Jaffe, A.: Quantum Physics. A Functional Integral Point of View, 2nd edn. Springer, Berlin (1987) · Zbl 0461.46051
[48] Hara, T, A rigorous control of logarithmic corrections in four dimensional \(φ ^4\) spin systems. I. trajectory of effective Hamiltonians, J. Stat. Phys., 47, 57-98, (1987)
[49] Hara, T; Tasaki, H, A rigorous control of logarithmic corrections in four dimensional \(φ ^4\) spin systems. II. critical behaviour of susceptibility and correlation length, J. Stat. Phys., 47, 99-121, (1987)
[50] Heydenreich, M, Long-range self-avoiding walk converges to alpha-stable processes, Ann. I. Henri Poincaré Probab. Stat., 47, 20-42, (2011) · Zbl 1210.82055
[51] Heydenreich, M; Hofstad, R; Sakai, A, Mean-field behavior for long- and finite range Ising model, percolation and self-avoiding walk, J. Stat. Phys., 132, 1001-1049, (2008) · Zbl 1152.82007
[52] Kadanoff, LP, Scaling laws for Ising models near \({T}_c\), Physics, 2, 263-272, (1966)
[53] Larkin, A.I., Khmel’Nitskiĭ, D.E.: Phase transition in uniaxial ferroelectrics. Soviet Physics JETP, 29:1123-1128, (1969). English translation of Zh. Eksp. Teor. Fiz. 56, 2087-2098 (1969) · Zbl 0381.60096
[54] Lebowitz, JL; Presutti, E, Statistical mechanics of systems of unbounded spins, Commun. Math. Phys., 50, 195-218, (1976)
[55] Lundow, PH; Markström, K, Critical behavior of the Ising model on the four-dimensional cubic lattice, Phys. Rev. E, 80, 031104, (2009)
[56] Mastropietro, V.: Non-Perturbative Renormalization. World Scientific, Singapore (2008) · Zbl 1159.81005
[57] Mitter, PK; Scoppola, B, The global renormalization group trajectory in a critical supersymmetric field theory on the lattice \({\mathbf{Z}}^3\), J. Stat. Phys., 133, 921-1011, (2008) · Zbl 1161.82310
[58] Newman, CM, Normal fluctuations and the FKG inequalities, Commun. Math. Phys., 74, 119-128, (1980) · Zbl 0429.60096
[59] Rivasseau, V.: From Perturbative to Constructive Renormalization. Princeton University Press, Princeton (1991)
[60] Sakai, A.: Application of the lace expansion to the \(φ ^4\) model. Preprint (2014)
[61] Sakai, A, Lace expansion for the Ising model, Commun. Math. Phys., 272, 283-344, (2007) · Zbl 1133.82007
[62] Salmhofer, M.: Renormalization: An Introduction. Springer, Berlin (1999) · Zbl 0913.00014
[63] Sheffield, S, Gaussian free fields for mathematicians, Probab. Theory Relat. Fields, 139, 521-541, (2007) · Zbl 1132.60072
[64] Simon, B.: Functional Integration and Quantum Physics. Academic Press, New York (1979) · Zbl 0434.28013
[65] Simon, B; Griffiths, RB, The \((ϕ ^4)_2\) field theory as a classical Ising model, Commun. Math. Phys., 33, 145-164, (1973)
[66] Slade, G.: The Lace Expansion and its Applications. Springer, Berlin, (2006). Lecture Notes in Mathematics, vol. 1879. Ecole d’Eté de Probabilités de Saint-Flour XXXIV-2004
[67] Slade, G., Tomberg, A.: In preparation · Zbl 0533.58034
[68] Sokal, AD, A rigorous inequality for the specific heat of an Ising or \(φ ^4\) ferromagnet, Phys. Lett., 71A, 451-453, (1979)
[69] Wegner, FJ; Riedel, EK, Logarithmic corrections to the molecular-field behavior of critical and tricritical systems, Phys. Rev. B, 7, 248-256, (1973)
[70] Wilson, KG, Renormalization group and critical phenomena. I. renormalization group and the Kadanoff scaling picture, Phys. Rev. B, 4, 3184-3205, (1971) · Zbl 1236.82016
[71] Wilson, KG, Renormalization group and critical phenomena. II. phase-space cell analysis of critical behavior, Phys. Rev. B, 4, 3174-3183, (1971) · Zbl 1236.82017
[72] Wilson, KG, The renormalization group: critical phenomena and the Kondo problem, Rev. Mod. Phys., 47, 773-840, (1975)
[73] Wilson, KG, Renormalization group methods, Adv. Math., 16, 170-186, (1975)
[74] Wilson, KG; Fisher, ME, Critical exponents in 3.99 dimensions, Phys. Rev. Lett., 28, 240-243, (1972)
[75] Wilson, KG; Kogut, J, The renormalization group and the \(ϵ \) expansion, Phys. Rep., 12, 75-200, (1974)
[76] Zinn-Justin, J.: Phase Transitions and Renormalization Group. Oxford University Press, Oxford (2007) · Zbl 1137.82002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.