×

zbMATH — the first resource for mathematics

Multiple states for flow through a collapsible tube with discontinuities. (English) Zbl 1308.76347
Summary: We study the occurrence of the multiple steady states that flows in a collapsible tube can develop under the effect of: (i) geometrical alterations (e.g. stenosis), (ii) variations of the mechanical properties of the tube wall, or (iii) variations of the external pressure acting on the conduit. Specifically, if the approaching flow is supercritical, two steady flow states are possible in a restricted region of the parameter space: one of these flow states is wholly supercritical while the other produces an elastic jump that is located upstream of the variation. In the latter case the flow undergoes a transition through critical conditions in the modified segment of the conduit. Both states being possible, the actual state is determined by the past history of the system, and the parameter values show a hysteretic behaviour when shifting from one state to the other. First we set up the problem in a theoretical framework assuming stationary conditions, and then we analyse the dynamics numerically in a one-dimensional framework. Theoretical considerations suggest that the existence of multiple states is associated with non-uniqueness of the steady-state solution, which is confirmed by numerical simulations of the fully unsteady problem.

MSC:
76Z05 Physiological flows
92C35 Physiological flow
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1080/03091928308209058
[2] DOI: 10.1017/S002211208700020X · Zbl 0615.76135
[3] Pedley, Perspectives in Fluid Dynamics pp 105– (2000)
[4] DOI: 10.1002/cnm.2622
[5] DOI: 10.1002/cnm.2580
[6] DOI: 10.1146/annurev.fluid.29.1.399
[7] Whitham, Linear and Nonlinear Waves (1974)
[8] Toro, Commun. Comput. Phys. 13 pp 361– (2013) · Zbl 1373.76362
[9] DOI: 10.1017/S0022112081001122
[10] DOI: 10.1017/S0022112079001348 · Zbl 0452.76100
[11] DOI: 10.1017/S0022112090003408 · Zbl 0708.76056
[12] DOI: 10.1017/S002211208200055X · Zbl 0514.76130
[13] DOI: 10.1146/annurev-fluid-122109-160703 · Zbl 1299.76319
[14] DOI: 10.1017/S0022112099006084 · Zbl 0971.76052
[15] Hayashi, Trans. ASME: J. Biomech. Engng 120 pp 468– (1998)
[16] DOI: 10.1016/0889-9746(91)90421-K
[17] DOI: 10.1146/annurev.fluid.36.050802.121918 · Zbl 1081.76063
[18] DOI: 10.1016/0889-9746(90)90058-D
[19] DOI: 10.1146/annurev.fl.26.010194.002525
[20] Elad, J. Appl. Physiol. 65 pp 14– (1988)
[21] DOI: 10.1080/00107510310001639878
[22] DOI: 10.1115/1.3261320
[23] DOI: 10.1016/j.jcp.2007.11.033 · Zbl 1132.76027
[24] Downing, Trans. ASME: J. Biomech. Engng 119 pp 317– (1997)
[25] Baines, Orographic Effects in Planetary Flows pp 233– (1980)
[26] Baines, Topographic Effects in Stratified Flows (1995)
[27] DOI: 10.1017/S0022112084001798
[28] DOI: 10.1146/annurev.fl.21.010189.001123
[29] DOI: 10.1017/jfm.2013.542 · Zbl 1294.76295
[30] Shapiro, Trans. ASME: J. Biomech. Engng 99 pp 126– (1977)
[31] DOI: 10.1098/rstb.1996.0080
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.