×

A discrete duality finite volume discretization of the vorticity-velocity-pressure Stokes problem on almost arbitrary two-dimensional grids. (English) Zbl 1308.76183

Summary: We present an application of the discrete duality finite volume method to the numerical approximation of the vorticity-velocity-pressure formulation of the two-dimensional Stokes equations, associated to various nonstandard boundary conditions. The finite volume method is based on the use of discrete differential operators obeying some discrete duality principles. The scheme may be seen as an extension of the classical Marker and Cell scheme to almost arbitrary meshes, thanks to an appropriate choice of degrees of freedom. The efficiency of the scheme is illustrated by numerical examples over unstructured triangular and locally refined nonconforming meshes, which confirm the theoretical convergence analysis led in the article.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
65N08 Finite volume methods for boundary value problems involving PDEs
65D07 Numerical computation using splines
65N15 Error bounds for boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Dubois, Vorticity-velocity-pressure and stream function-vorticity formulations for the Stokes problem, J Math Pures Appl 82 pp 1395– (2003) · Zbl 1070.76014 · doi:10.1016/j.matpur.2003.09.002
[2] Bègue, Les équations de Stokes et de Navier-Stokes avec des conditions aux limites sur la pression, Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar IX pp 179– (1988)
[3] Girault, Incompressible Finite Element Methods for Navier-Stokes Equations with Nonstandard Boundary Conditions in, Math Comput 183 pp 55– (1988) · Zbl 0666.76053
[4] Amara, Vorticity-velocity-pressure formulation for Navier-Stokes equations, Comput Vis Sci 6 pp 47– (2004) · Zbl 1299.76059 · doi:10.1007/BF02663032
[5] Amara, Vorticity-velocity-pressure formulation for the Stokes equations, Math Comput 73 pp 1673– (2004) · Zbl 1068.76047 · doi:10.1090/S0025-5718-03-01615-6
[6] Azaïez, Spectral discretization of the vorticity, velocity and pressure formulation of the Navier-Stokes equations, Numer Math 104 pp 1– (2006) · Zbl 1138.76052 · doi:10.1007/s00211-006-0684-z
[7] Dubois, Vorticity-velocity-pressure formulation for the Stokes problem, Math Meth Appl Sci 25 pp 1091– (2002) · Zbl 1099.76049 · doi:10.1002/mma.328
[8] Dubois, First vorticity-velocity-pressure numerical scheme for the Stokes problem, Comput Meth Appl Mech Eng 192 pp 4877– (2003) · Zbl 1054.76047 · doi:10.1016/S0045-7825(03)00377-3
[9] Abboud, A priori and a posteriori estimates for three-dimensional Stokes equations with nonstandard boundary conditions, Numer Methods Partial Differ Equ 28 pp 1178– (2012) · Zbl 1343.76016 · doi:10.1002/num.20676
[10] Bernardi, Spectral discretization of the vorticity, velocity and pressure formulation of the Stokes equations, SIAM J Numer Anal 44 pp 826– (2006) · Zbl 1117.65159 · doi:10.1137/050622687
[11] Proot, Least-Squares spectral elements applied to the Stokes problem, J Comput Phys 181 pp 454– (2002) · Zbl 1178.76270 · doi:10.1006/jcph.2002.7137
[12] Harlow, Numerical calculations of time dependent viscous incompressible flow of fluids with a free surface, Phys Fluids 8 pp 2182– (1965) · Zbl 1180.76043 · doi:10.1063/1.1761178
[13] Nicolaides, Computational fluid dynamics review pp 279– (1995)
[14] Delcourte, Finite volumes for complex applications IV pp 447– (2005)
[15] Domelevo, A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids, Math Model Numer Anal 39 pp 1203– (2005) · Zbl 1086.65108 · doi:10.1051/m2an:2005047
[16] Hermeline, A finite volume method for the approximation of diffusion operators on distorted meshes, J Comput Phys 160 pp 481– (2000) · Zbl 0949.65101 · doi:10.1006/jcph.2000.6466
[17] Hermeline, Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes, Comput Methods Appl Mech Eng 192 pp 1939– (2003) · Zbl 1037.65118 · doi:10.1016/S0045-7825(02)00644-8
[18] Andreianov, Discrete duality finite volume schemes for Leray-Lions-type elliptic problems on general 2D meshes, Numer Methods Partial Differ Equ 23 pp 145– (2007) · Zbl 1111.65101 · doi:10.1002/num.20170
[19] Boyer, Finite volume method for 2D linear and nonlinear elliptic problems with discontinuities, SIAM J Numer Anal 46 pp 3032– (2008) · Zbl 1180.35533 · doi:10.1137/060666196
[20] Coudière, A 3D discrete duality finite volume method for nonlinear elliptic equations, SIAM J Sci Comput 33 pp 1739– (2011) · Zbl 1243.35061 · doi:10.1137/100786046
[21] Coudière, The discrete duality finite volume method for convection-diffusion problems, SIAM J Numer Anal 47 pp 4163– (2010) · Zbl 1210.65183 · doi:10.1137/080731219
[22] Andreianov, Convergence of discrete duality finite volume schemes for the cardiac bidomain model, Netw Heterog Media 6 pp 195– (2011) · Zbl 1328.65190 · doi:10.3934/nhm.2011.6.195
[23] Coudière, A 2D/3D discrete duality finite volume scheme: application to ECG simulation, Int J Finite Vol 6 (2009)
[24] Chainais-Hillairet, Discrete duality finite volume schemes for two-dimensional drift-diffusion and energy-transport models, Int J Numer Methods Fluids 59 pp 239– (2009) · Zbl 1154.82034 · doi:10.1002/fld.1393
[25] Delcourte, A discrete duality finite volume approach to Hodge decomposition and div-curl problems on almost arbitrary two-dimensional meshes, SIAM J Numer Anal 45 pp 1142– (2007) · Zbl 1152.65110 · doi:10.1137/060655031
[26] Hermeline, A finite volume method for the approximation of Maxwell’s equations in two space dimensions on arbitrary meshes, J Comput Phys 227 pp 9365– (2008) · Zbl 1207.78035 · doi:10.1016/j.jcp.2008.05.013
[27] S. Delcourte http://tel.archives-ouvertes.fr/tel-00200833/fr/
[28] Krell, Stabilized DDFV Schemes for Stokes Problem with Variable Viscosity on General 2D Meshes, Numer Methods Partial Differ Equ pp 1666– (2011) · Zbl 1426.76389 · doi:10.1002/num.20603
[29] Krell, Finite volume method for general multifluid flows governed by the interface Stokes problem, Math Models Methods Appl Sci 22 pp 1150025, 35 p– (2012) · Zbl 1452.76056 · doi:10.1142/S0218202511500254
[30] Krell, The discrete duality finite volume method for Stokes equations on three-dimensional polyhedral meshes, SIAM J Numer Anal 50 pp 808– (2012) · Zbl 1387.65113 · doi:10.1137/110831593
[31] Blanc, A staggered finite volume scheme on general meshes for the generalized Stokes problem in two space dimensions, Int J Finite Vol 2 (2005)
[32] Eymard, A staggered finite volume scheme on general meshes for the Navier-Stokes equations in two space dimensions, Int J Finite Vol 2 (2005)
[33] Eymard, On a stabilized collocated finite volume scheme for the Stokes problem, Math Model Numer Anal 40 pp 501– (2006) · Zbl 1160.76370 · doi:10.1051/m2an:2006024
[34] Eymard, Convergence analysis of a colocated finite volume scheme for the incompressible Navier-Stokes equations on general 2 or 3D meshes, SIAM J Numer Anal 45 pp 1– (2007) · Zbl 1173.76028 · doi:10.1137/040613081
[35] Le, Discrete Poincaré inequalities for arbitrary meshes in the discrete duality finite volume context, ETNA, Elect Trans Numer Anal 40 pp 94– (2013)
[36] S. Heib
[37] Bernardi, More pressure in the finite element discretization of the Stokes Problem, Math Model Numer Anal 34 pp 953– (2000) · Zbl 0992.76051 · doi:10.1051/m2an:2000111
[38] Crouzeix, Conforming and nonconforming finite element methods for solving the stationary Stokes equations, RAIRO Anal Numer 7 pp 33– (1973)
[39] Girault, Finite element methods for Navier-stokes equations (1986) · Zbl 0585.65077 · doi:10.1007/978-3-642-61623-5
[40] Ciarlet, The finite element method for elliptic problems (1978)
[41] Payne, An optimal Poincaré inequality for convex domain, Arch Rational Mech Anal 5 pp 286– (1960) · Zbl 0099.08402 · doi:10.1007/BF00252910
[42] Carstensen, Constants in Clément-interpolation error and residual based a posteriori estimates in finite element methods, East-West J Numer Math 8 pp 153– (2000) · Zbl 0973.65091
[43] Verfürth, Error estimates for some quasi-interpolation operators, Math Model Numer Anal 33 pp 695– (1999) · Zbl 0938.65125 · doi:10.1051/m2an:1999158
[44] Bercovier, A finite element for the numerical solution of viscous incompressible flows, J Comput Phys 30 pp 181– (1979) · Zbl 0395.76040 · doi:10.1016/0021-9991(79)90098-6
[45] Ruas, Méthodes vitesse-tourbillon pour les équations de Navier-Stokes, in: Actes du 29ème congrès d’Analyse Numérique, Canum’97 pp 329– (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.