×

zbMATH — the first resource for mathematics

Patterns and dynamics in transitional plane Couette flow. (English) Zbl 1308.76135
Summary: Near transition, plane Couette flow takes the form of large-scale, oblique, and statistically steady alternating bands of turbulent and laminar flow. Properties of these flows are investigated using direct numerical simulation in a tilted computational domain. Four regimes–uniform, intermittent, periodic, and localized–are characterized. The Fourier spectrum along the direction of variation of the pattern is presented, and the component corresponding to the pattern wavenumber is investigated as an order parameter. The mean flow of a periodic pattern is characterized and shown to lead to a relation between the Reynolds number and the wavelength and angle of a pattern.
©2011 American Institute of Physics

MSC:
76F06 Transition to turbulence
76F65 Direct numerical and large eddy simulation of turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. Prigent, ”La spirale turbulente: Motif de grande longueur d’onde dans les écoulements cisallés turbulents,” Ph.D. thesis, University Paris-Sud, 2001.
[2] DOI: 10.1103/PhysRevLett.89.014501 · doi:10.1103/PhysRevLett.89.014501
[3] DOI: 10.1016/S0167-2789(02)00685-1 · Zbl 1036.76023 · doi:10.1016/S0167-2789(02)00685-1
[4] DOI: 10.1007/1-4020-4049-0_11 · doi:10.1007/1-4020-4049-0_11
[5] DOI: 10.1017/S0022112065000241 · Zbl 0134.21705 · doi:10.1017/S0022112065000241
[6] DOI: 10.1017/S0022112066000211 · doi:10.1017/S0022112066000211
[7] DOI: 10.1017/S0022112086002513 · doi:10.1017/S0022112086002513
[8] DOI: 10.1103/PhysRevLett.62.257 · doi:10.1103/PhysRevLett.62.257
[9] DOI: 10.1007/s100510170360 · doi:10.1007/s100510170360
[10] DOI: 10.1063/1.1508796 · Zbl 1185.76095 · doi:10.1063/1.1508796
[11] DOI: 10.1103/PhysRevLett.94.014502 · doi:10.1103/PhysRevLett.94.014502
[12] DOI: 10.1007/1-4020-4049-0_6 · doi:10.1007/1-4020-4049-0_6
[13] DOI: 10.1017/S002211200600454X · Zbl 1124.76018 · doi:10.1017/S002211200600454X
[14] DOI: 10.1088/1742-6596/137/1/012029 · doi:10.1088/1742-6596/137/1/012029
[15] DOI: 10.1007/978-90-481-3723-7_8 · doi:10.1007/978-90-481-3723-7_8
[16] DOI: 10.1017/S0022112010000297 · Zbl 1189.76254 · doi:10.1017/S0022112010000297
[17] DOI: 10.1007/s10955-011-0126-x · Zbl 1213.76095 · doi:10.1007/s10955-011-0126-x
[18] DOI: 10.1103/PhysRevE.83.036308 · doi:10.1103/PhysRevE.83.036308
[19] Tsukahara T., Proceedings of the Fourth International Symposium on Turbulence and Shear Flow Phenomena pp 935– (2005)
[20] DOI: 10.1615/ICHMT.2006.TurbulHeatMassTransf.300 · doi:10.1615/ICHMT.2006.TurbulHeatMassTransf.300
[21] DOI: 10.1103/PhysRevE.80.067301 · doi:10.1103/PhysRevE.80.067301
[22] DOI: 10.1017/S002211201000460X · Zbl 1225.76172 · doi:10.1017/S002211201000460X
[23] DOI: 10.1103/PhysRevE.80.046315 · doi:10.1103/PhysRevE.80.046315
[24] DOI: 10.1017/S0022112091002033 · Zbl 0721.76040 · doi:10.1017/S0022112091002033
[25] DOI: 10.1017/S0022112095000978 · Zbl 0867.76032 · doi:10.1017/S0022112095000978
[26] DOI: 10.1063/1.1566753 · Zbl 1186.76556 · doi:10.1063/1.1566753
[27] DOI: 10.1006/jcph.1995.1208 · Zbl 0840.76070 · doi:10.1006/jcph.1995.1208
[28] DOI: 10.1007/978-3-642-03085-7_21 · doi:10.1007/978-3-642-03085-7_21
[29] DOI: 10.1063/1.869773 · doi:10.1063/1.869773
[30] Schmiegel A., Phys. Fluids 51 pp 395– (2000)
[31] DOI: 10.1103/PhysRevLett.104.104501 · doi:10.1103/PhysRevLett.104.104501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.