×

Instability in internal solitary waves with trapped cores. (English) Zbl 1308.76127

Summary: A numerical method that employs a combination of contour advection and pseudo-spectral techniques is used to investigate instability in internal solitary waves with trapped cores. A three-layer configuration for the background stratification in which the top two layers are linearly stratified and the lower layer is homogeneous is considered throughout. The strength of the stratification in the very top layer is chosen to be sufficient so that waves of depression with trapped cores can be generated. The flow is assumed to satisfy the Dubriel-Jacotin-Long equation both inside and outside of the core region. The Brunt-Vaisala frequency is modelled such that it varies from a constant value outside of the core to zero inside the core over a sharp but continuous transition length. This results in a stagnant core in which the vorticity is zero and the density is homogeneous and approximately equal to that at the core boundary. The time dependent simulations show that instability occurs on the boundary of the core. The instability takes the form of Kelvin-Helmholtz billows. If the instability in the vorticity field is energetic enough, disturbance in the buoyancy field is also seen and fluid exchange takes place across the core boundary. Occurrence of the Kelvin-Helmholtz billows is attributed to the sharp change in the vorticity field at the boundary between the core and the pycnocline. The numerical scheme is not limited by small Richardson number unlike the other alternatives currently available in the literature which appear to be.{
©2012 American Institute of Physics}

MSC:

76E17 Interfacial stability and instability in hydrodynamic stability
76B65 Rossby waves (MSC2010)
76M23 Vortex methods applied to problems in fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] J. R. Apel, L. A. Ostrovsky, Y. A. Stepanyants, and J. F. Lynch, ”Internal solitons in the ocean,” Techinical Report, Woods Hole Oceanog. Inst., WHOI-2006-04 2006).
[2] J. Grue, ”Waves in geophysical fluids-tsunamis, rogue waves, internal waves and internal tides,” 1st ed. (Springer, New York, 2006), pp. 205–270. · Zbl 1204.76008
[3] DOI: 10.1146/annurev.fluid.38.050304.092129 · Zbl 1098.76018
[4] DOI: 10.1121/1.2395914
[5] DOI: 10.1029/98GL01772
[6] DOI: 10.1029/2001JC001163
[7] DOI: 10.1109/JOE.2004.836998
[8] DOI: 10.1029/2003GL017706
[9] DOI: 10.1029/2004GL021052
[10] DOI: 10.1175/1520-0493(1981)109<1726:TMGOTG>2.0.CO;2
[11] DOI: 10.2514/3.45780
[12] DOI: 10.1175/1520-0469(1990)047<2516:MTMAAS>2.0.CO;2
[13] DOI: 10.1017/S0022112000008648 · Zbl 0979.76013
[14] DOI: 10.1063/1.3030947 · Zbl 1182.76120
[15] DOI: 10.1017/S0022112067001041 · Zbl 0147.46503
[16] DOI: 10.1063/1.869450 · Zbl 1185.76911
[17] DOI: 10.1063/1.869771 · Zbl 1185.76909
[18] DOI: 10.1016/S0169-5983(98)00046-X · Zbl 1051.76530
[19] M. Stastna and K. G. Lamb, ”Internal solitary-like waves with recirculating cores,” in Proceedings of the 5th International Symposium on Stratified Flows, edited by G. Lawerence, N. Yonemitsu, and R. Pieters (2000), p. 821.
[20] DOI: 10.1017/S002211200100636X · Zbl 1009.76010
[21] DOI: 10.1063/1.1811551 · Zbl 1187.76293
[22] DOI: 10.1017/S0022112004008596 · Zbl 1067.76016
[23] DOI: 10.5194/npg-17-303-2010
[24] DOI: 10.1017/S0022112010004301 · Zbl 1225.76061
[25] DOI: 10.1063/1.3521532 · Zbl 1308.76056
[26] L. Dubreil-Jacotin, ”Sur la determination rigoureuse des ondes permantentes peri-odiques d’ amplitude finite,” J. Math. Pure Appl. 13, 217 (1934).
[27] DOI: 10.1111/j.2153-3490.1953.tb01035.x
[28] DOI: 10.4319/lo.1999.44.6.1400
[29] DOI: 10.4319/lo.2003.48.4.1509
[30] B. Turkington, A. Eydeland, and S. Wang, ”A computational method for solitary internal waves in a continuously stratified fluid,” Stud. Appl. Math. 85, 93 (1991). · Zbl 0728.76026
[31] DOI: 10.1175/2010JPO4308.1
[32] DOI: 10.1016/j.jcp.2010.03.048 · Zbl 1310.76124
[33] DOI: 10.1016/j.jcp.2009.01.015 · Zbl 1159.76031
[34] DOI: 10.1016/j.jcp.2009.05.025 · Zbl 1261.86002
[35] DOI: 10.1017/jfm.2011.261 · Zbl 1241.76100
[36] DOI: 10.1017/S0022112060001018 · Zbl 0094.21204
[37] DOI: 10.1002/qj.v123:540
[38] See supplementary material at http://dx.doi.org/10.1063/1.3673612E-PHFLE6-24-010201 for movies 1–9.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.