×

Lagrangian dynamics in stochastic inertia-gravity waves. (English) Zbl 1308.76059

Summary: For an idealized inertia-gravity wave, the Stokes drift, defined as the difference in end positions of a fluid parcel as derived in the Lagrangian and Eulerian coordinates, is exactly zero after one wave cycle in a deterministic flow. When stochastic effects are incorporated into the model, nonlinearity in the velocity field changes the statistical properties. Better understanding of the statistics of a passive tracer, such as the mean drift and higher order moments, leads to more accurate predictions of the pattern of Lagrangian mixing in a realistic environment. In this paper, we consider the inertia-gravity wave equation perturbed by white noise and solve the Fokker-Planck equation to study the evolution in time of the probability density function of passive tracers in such a flow. We find that at initial times the tracer distribution closely follows the nonlinear background flow and that nontrivial Stokes drift ensues as a result. Over finite times, we measure chaotic mixing based on the stochastic mean flow and identify nontrivial mixing structures of passive tracers, as compared to their absence in the deterministic flow. At later times, the probability density field spreads out to sample larger regions and the mean Stokes drift approaches an asymptotic value, indicating suppression of Lagrangian mixing at long time scales.{
©2010 American Institute of Physics}

MSC:

76B55 Internal waves for incompressible inviscid fluids
76B65 Rossby waves (MSC2010)
60H30 Applications of stochastic analysis (to PDEs, etc.)
86A05 Hydrology, hydrography, oceanography
37N10 Dynamical systems in fluid mechanics, oceanography and meteorology
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] DOI: 10.1098/rspa.1934.0169
[2] DOI: 10.1111/j.2153-3490.1955.tb01147.x
[3] Ottino J. M., The Kinematics of Mixing: Stretching, Chaos and Transport (1989) · Zbl 0721.76015
[4] Okubo A., Deep-Sea Res. 17 pp 445– (1970)
[5] DOI: 10.1063/1.857730
[6] DOI: 10.1016/0167-2789(91)90088-Q · Zbl 0716.76025
[7] DOI: 10.1017/S0022112095000462 · Zbl 0847.76007
[8] DOI: 10.1063/1.166479 · Zbl 0979.37012
[9] DOI: 10.1016/S0167-2789(00)00199-8 · Zbl 1015.76077
[10] DOI: 10.1017/S0022112004002526 · Zbl 1065.76031
[11] DOI: 10.1016/S0167-2789(00)00142-1 · Zbl 0970.76043
[12] DOI: 10.1103/PhysRevE.68.056304
[13] DOI: 10.1175/2009JAS2865.1
[14] DOI: 10.1175/2010JAS3176.1
[15] DOI: 10.1063/1.3276062 · Zbl 1311.76035
[16] Sobczyk K., Stochastic DIfferential Equations with Applications to Physics and Engineering (1991) · Zbl 0762.60050
[17] DOI: 10.1175/1520-0485(1981)011<1463:OOIGWI>2.0.CO;2
[18] DOI: 10.1175/1520-0469(1993)050<0785:VROOGW>2.0.CO;2
[19] DOI: 10.1029/2003JD003535
[20] DOI: 10.1175/JAS3305.1
[21] DOI: 10.1007/978-1-4020-6218-6_5
[22] DOI: 10.1016/j.jcp.2008.10.030 · Zbl 1330.86008
[23] DOI: 10.1002/lpor.200910002
[24] DOI: 10.1146/annurev.fluid.37.061903.175836 · Zbl 1094.01007
[25] Stokes G. G., Trans. Cambridge Philos. Soc. 8 pp 441– (1847)
[26] DOI: 10.1103/PhysRevLett.81.3136
[27] DOI: 10.1098/rspa.2006.1778 · Zbl 1129.76042
[28] DOI: 10.1175/1520-0485(2002)032<2334:NEOWGT>2.0.CO;2
[29] DOI: 10.1175/JPO3099.1
[30] DOI: 10.1023/A:1018639928526 · Zbl 1063.76046
[31] DOI: 10.1063/1.1430736 · Zbl 1184.76067
[32] DOI: 10.1023/A:1022837913026 · Zbl 1091.76025
[33] DOI: 10.1103/PhysRevE.69.056302
[34] DOI: 10.1029/2008WR007383
[35] DOI: 10.1175/1520-0469(2001)058<1493:TADPFS>2.0.CO;2
[36] DOI: 10.1175/1520-0469(2002)059<2830:TADPFS>2.0.CO;2
[37] Gill A. E., Atmosphere-Ocean Dynamics (1982)
[38] Lighthill J., Waves in Fluids (1979)
[39] DOI: 10.1016/S0898-1221(03)90022-8 · Zbl 1047.76030
[40] DOI: 10.1175/1520-0485(1982)012<0515:SFDIWA>2.0.CO;2
[41] Bewley T., Numerical Renaissance: Simulation, Optimization, and Control (2010)
[42] DOI: 10.1002/sapm1971504293 · Zbl 0237.76012
[43] DOI: 10.5194/angeo-22-3869-2004
[44] DOI: 10.1029/2002JD003045
[45] DOI: 10.1016/S0167-2789(01)00234-2 · Zbl 1049.76063
[46] DOI: 10.1063/1.2963139 · Zbl 1182.76169
[47] Mahalov A., Kinetic and Related Models 2 pp 215– (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.