×

Stability of point-vortex multipoles revisited. (English) Zbl 1308.76051

Summary: The point-vortex tripoles and pentapoles with zero total circulation are considered in the rigid-lid barotropic, equivalent-barotropic, and quasigeostrophic two-layer models. A tripole is assembled by three symmetrically arranged collinear vortices, while a pentapole by five vortices, of which one is located at the center of a square and four in the vertices of the square. The vortices on the sides, termed satellite vortices, are equal in strength and opposite in sign to the central vortex. To fulfill the zero-total-circulation condition, the central vortex is taken to be twice as strong as each of the satellite vortices in a tripole and four times as strong in a pentapole. In the two-layer model, two cases are distinguished, namely, the flat multipoles whose vortices are all located in the same layer and the carousel multipoles whose central vortex and satellite vortices reside in different layers. In all the models, the tripoles are shown to be nonlinearly stable and pentapoles, generally, unstable. Carousel pentapoles comparable in their size with the Rossby radius, and smaller, are exceptional in that they are stable to centrally symmetric perturbations (and, presumably, to arbitrary perturbations). The simple proof of the tripole stability is based on the fact that among the possible three-vortex configurations with zero total circulation characterized by the same (fixed) value of the Hamiltonian, there exists only one tripole, and, within the iso-Hamiltonian sheet, the squared linear momentum vanishes at this unique tripole only. This approach, being in essence universal for all models, works only with tripoles. For instance, a quadrupole cannot be treated in such a way, because there is a continuum of configurations of four vortices with zero total circulation on which the squared impulse vanishes. Dealing with pentapoles, we consider the perturbations that do not violate the central symmetry of the vortex configuration, fix the angular momentum, and examine the second derivatives of the Hamiltonian on the iso-momentum sheet.{
©2011 American Institute of Physics}

MSC:

76B47 Vortex flows for incompressible inviscid fluids
76E20 Stability and instability of geophysical and astrophysical flows
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1038/338569a0
[2] DOI: 10.1017/S0022112091001301
[3] DOI: 10.1017/S0022112091002069
[4] DOI: 10.1017/S0022112094000157
[5] DOI: 10.1016/0198-0149(92)90062-X
[6] DOI: 10.1063/1.3481797 · Zbl 06421100
[7] DOI: 10.1017/S0022112088003283 · Zbl 0655.76040
[8] DOI: 10.1103/PhysRevE.70.016307
[9] DOI: 10.1070/RD2004v009n04ABEH000293 · Zbl 1102.76008
[10] DOI: 10.1063/1.2432915 · Zbl 1146.76443
[11] DOI: 10.1146/annurev.fl.24.010192.000245
[12] DOI: 10.1063/1.862605 · Zbl 0394.76025
[13] DOI: 10.1016/0169-5983(88)90044-5
[14] DOI: 10.1063/1.867025 · Zbl 0656.76026
[15] DOI: 10.1063/1.870233 · Zbl 1149.76306
[16] DOI: 10.1063/1.2425103 · Zbl 1144.81308
[17] DOI: 10.1063/1.3216063 · Zbl 1183.76077
[18] Gryanik V. M., Atmos. Oceanic Phys. 19 (6) pp 171– (1983)
[19] DOI: 10.1098/rspa.1985.0001 · Zbl 0571.76017
[20] DOI: 10.1175/1520-0469(1985)042<1465:HETBAS>2.0.CO;2
[21] Gryanik V. M., Atmos. Oceanic Phys. 25 pp 243– (1989)
[22] DOI: 10.1070/rd2000v005n04ABEH000157 · Zbl 0973.76018
[23] DOI: 10.1070/RD2006v011n03ABEH000361 · Zbl 1164.76423
[24] Sokolovskiy M. A., Nonlinear Dyn. 2 pp 27– (2006)
[25] DOI: 10.1007/978-1-4020-6744-0_43 · Zbl 1207.76040
[26] DOI: 10.1017/S0022112004008122 · Zbl 1067.76094
[27] DOI: 10.1063/1.2196094 · Zbl 1185.76477
[28] DOI: 10.1017/S0022112007006386 · Zbl 1118.76070
[29] DOI: 10.1017/S0022112007006404 · Zbl 1118.76071
[30] DOI: 10.1007/s00162-009-0150-5 · Zbl 1191.76030
[31] DOI: 10.1017/S0022112010006026 · Zbl 1225.76065
[32] DOI: 10.1137/S0036141098302124 · Zbl 0961.76014
[33] DOI: 10.1017/S002211209600002X · Zbl 0875.76067
[34] DOI: 10.1017/S0022112000001816 · Zbl 0998.76031
[35] DOI: 10.1063/1.1482175 · Zbl 1080.76520
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.