zbMATH — the first resource for mathematics

Modifications of Newton’s method to extend the convergence domain. (English) Zbl 1308.65072
Summary: The paper is devoted to description of certain ways of extending the domain of convergence of Newton’s method. This paper is a survey of contributions of representatives of Soviet and Russian mathematical school, namely, Kalitkin, Puzynin, Madorskij and others. They introduced different kinds of damping multiplier and showed that their usage may be helpful and beneficial while solving different nonlinear equations and systems starting with “bad” zero estimate. We have also paid attention to the problem of degeneracy of Jacobian matrix and the ways it was solved by named researchers. Finally, we have tested the presented iterative schemes on some examples in order to check their effectiveness. All complete strict proofs of key theorems can be found both in Russian and English in the provided bibliography.

65H10 Numerical computation of solutions to systems of equations
65-02 Research exposition (monographs, survey articles) pertaining to numerical analysis
65H05 Numerical computation of solutions to single equations
Full Text: DOI
[1] Aleksandrov, L, The Newton-Kantorovich regularized computing processes, USSR Comput. Math. Math. Phys., 11, 46-57, (1971) · Zbl 0291.65016
[2] Amat, S; Busquier, S, On a higher order secant method, Appl. Math. Comput., 141, 321-329, (2003) · Zbl 1035.65057
[3] Amat, S; Busquier, S; Magreñan, AA, Reducing chaos and bifurcations in Newton-type methods, Abstr. Appl. Anal., 726701, 10, (2013) · Zbl 07095287
[4] Argyros, IK; Hilout, S, On the semilocal convergence of damped newton’s method, Appl. Math. Comput., 219, 2808-2824, (2012) · Zbl 1308.65071
[5] Argyros, IK; Gutiérrez, JM; Magreñán, ÁA; Romero, N, Convergence of the relaxed newton’s method, J. Korean. Math. Soc., 51, 137-162, (2014) · Zbl 1286.65067
[6] Babajee, DKR; Cordero, A; Soleymani, F; Torregrosa, JR, On improved three-step schemes with high efficiency index and their dynamics, Numer. Algorithms, 65, 153-169, (2014) · Zbl 1300.65028
[7] Cordero, A., Lotfi, T., Mahdiani, K., Torregrosa, J.R.: Two optimal general classes of iterative methods with eight-order. Acta Appl. Math. doi:10.1007/s10440-014-9869-0 · Zbl 1305.65142
[8] Cordero, A; Torregrosa, JR, A class of Steffensen type methods with optimal order of convergence, Appl. Math. Comput., 217, 7653-7659, (2011) · Zbl 1216.65055
[9] Dembo, RS; Eisenstat, SC; Steihaug, T, Inexact Newton methods, SIAM J. Numer. Anal., 19, 400-408, (1982) · Zbl 0478.65030
[10] Dennis, J.E., Jr. Schnabel, R.B.: Numerical methods for unconstrained optimization and nonlinear equations. Classics in applied mathematics, vol. 16. SIAM (1996) · Zbl 0847.65038
[11] Ermakov, VV; Kalitkin, NN, The optimal step and regularization for newton’s method, USSR Comput. Math. Math. Phys., 21, 235-242, (1981) · Zbl 0484.65027
[12] Ezquerro, JA; Hernández, MA; Romero, N, On some one-point hybrid iterative methods. original res. art, Nonlinear Anal. Theory Methods Appl., 72, 587-601, (2010) · Zbl 1180.65069
[13] Gavurin, MK, Nonlinear functional equations and continuous analogues of iteration methods, Izvestiya Vysshikh Uchebnykh Zavedenii Matematika, 5, 18-31, (1958)
[14] Hernández, MA; Romero, N, A uniparametric family of iterative processes for solving nondifferentiable equations, J. Math. Annal. Appl., 275, 821-834, (2002) · Zbl 1019.65036
[15] Kalitkin, N.N., et al.: Mathematical Models in Nature and Science. Moscow (2005, in Russian)
[16] Kalitkin, NN; Poshivailo, IP, Computation of simple and multiple roots of a nonlinear equation, Math. Models Comput. Simul., 1, 514-520, (2009)
[17] Kalitkin, NN; Kuz’mina, LV, Computation of roots of an equation and determination of their multiplicity, Math. Models Comput. Simul., 3, 65-80, (2011)
[18] Kung, HT; Traub, JF, Optimal order of one-point and multi-point iteration, J. Assoc. Comput. Mach., 21, 643-651, (1974) · Zbl 0289.65023
[19] Madorskij, V.M.: Quasi-Newtonian Processes for Solving Nonlinear Equations. Brest State University, Brest (2005, in Russian) · Zbl 1286.65067
[20] Magreñán, Á.A.: Estudio de la dinámica del método de Newton amortiguado. PhD Thesis University of La Rioja, Spain. http://dialnet.unirioja.es/servlet/tesis?codigo=38821 (2013) · Zbl 0484.65027
[21] More, JJ; Garbow, BS; Hillstrom, KE, Testing unconstrained optimization software, ACM Trans. Math. Softw., 7, 17-41, (1981) · Zbl 0454.65049
[22] Ostrowski, A.M.: Solutions of Equations and Systems of Equations. Academic Press, New York-London (1966) · Zbl 0222.65070
[23] Puzynin, IV; Zhanlav, T, Convergence of iterations on the basis of a continuous analogue of the Newton method, Comput. Math. Math. Phys., 32, 729-737, (1992) · Zbl 0769.65034
[24] Puzynin, IV; etal., The generalized continuous analog of newton’s method for the numerical study of some nonlinear quantum-field models, Phys. Part. Nucl., 30, 87, (1999)
[25] Tikhonov, AN, Regularization of incorrectly posed problems, Soviet Math. Dokl., 4, 6, (1963) · Zbl 0183.11601
[26] Tikhonov, AN, The stability of algorithms for the solution of degenerate systems of linear algebraic equations, USSR Comput. Math. Math. Phys., 5, 181-188, (1965) · Zbl 0161.35404
[27] Tikhonov, A.N., Arsenin, V.Y.: Methods for Solving Ill-Posed Problems. John Wiley and Sons Inc, New York (1977) · Zbl 0499.65030
[28] Velasco Del Olmo, A.I.: Mejoras de los dominios de puntos de salida de métodos iterativos que no utilizan derivadas. PhD University of La Rioja, Spain. http://dialnet.unirioja.es/servlet/tesis?codigo=38218 (2013)
[29] Ypma, TJ, Local convergence of inexact Newton methods, SIAM J. Numer. Anal., 21, 583-590, (1984) · Zbl 0566.65037
[30] Zhidkov, EP; Makarenko, GJ; Puzynin, IV, Continuous analogue of newton’s method in nonlinear problems of physics, Phys. Part. Nuclei., 4, 127-166, (1973)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.