×

Asymptotic analysis of a non-linear non-local integro-differential equation arising from bosonic quantum field dynamics. (English) Zbl 1308.45005

Let \(d\in\mathbb{N}\setminus\{0\}\), \(h\) a strictly positive parameter, \(S(\mathbb{R}^d,C)\) the Schwartz space, \(f\) a function defined on \(S(\mathbb{R}^d,C)\), \(\vec\xi_0\in\mathbb{R}^d\setminus\{0\}\), \(X\subseteq R\), \(Y\subseteq\mathbb{R}^d\), \({\mathcal B}(X,Y)\) the space of bounded functions from \(X\) to \(Y\), \({\mathcal C}(X,Y)\) the space of continuous functions from \(X\) to \(Y\), \(\vec u\in{\mathcal B}(X,Y)\), \(X'\subseteq X\), \(\| u\|_{\infty,X'}= \sup_{x\in X'} p|\vec u(x)|\), \(\not\mkern-7mu\int^b_a\vec u(\sigma)\,d\sigma= (b-a)^{-1} \int^b_a\vec u(\sigma)\,d\sigma\) and the functions \({\mathcal F}^{(h)}\) and \(F^{(0)}\) from \({\mathcal B} (\mathbb{R}^+,\mathbb{R}^d)\) to \({\mathcal C}(\mathbb{R}^+,\mathbb{R}^d)\) defined by \[ {\mathcal F}^{(h)}(\vec u)(t)= -2{\mathcal R} \int_{\mathbb{R}^d} \int^{th^{-1}}_0 \exp\Biggl(-ir\Biggl(\vec\eta^2- 2\vec\eta \not\mkern-7mu\int^t_{t-hr}\vec u_\sigma d\sigma\Biggr)\Biggr)\vec\eta|f(\vec\eta)|^2\,drd\vec\eta, \]
\[ F^{(0)}(\vec u)(t)= -2{\mathcal R} \int^{+\infty}_0 \int_{\mathbb{R}^d}\exp(-ir(\vec\eta^2- 2\vec\eta\vec u_t))\vec\eta|f(\vec\eta)|^2\, d\vec\eta dr. \] The author considers the nonlinear integro-differential equation \[ {d\over dt}\vec\xi^{(h)}_t={\mathcal F}^{(h)}(\vec\xi^{(h)}_t),\;h>0,\qquad \vec\xi^{(h)}_{t=0}= \vec\xi_0,\;h>0,\tag{1} \] and the limit equation as \(h\to 0\) \[ {d\over dt}\vec\xi^{(0)}_t= F^{(0)}(\vec\xi^{(0)}_t),\quad \vec\xi^{(0)}_{t=0}= \vec\xi_0.\tag{2} \] The author shows the existence and uniqueness of strong global solutions for these equations and a result of uniform convergence on every compact interval of the solution of the one parameter family towards the solution of the limit equation.
(1) admits a unique solution \(\vec\xi^{(h)}\in C^1(\mathbb{R}^+_t, \mathbb{R}^d)\) and (2) admits a maximal solution \(\vec\xi^{(0)}\in C^1([0, T_{\max}),\mathbb{R}^d)\) with \(T_{\max}> 0\). The author proves that (1) has a unique solution on \(C^1(\mathbb{R}^+,\mathbb{R}^d)\) and if \(d\geq 3\), (2) has a unique maximal solution \(\vec\xi^{(0)}\) and \(\lim_{t\to+\infty} \vec\xi^{(0)}_t= 0\).
Moreover, for \(d\geq 3\) and \(T\in (0,T_{\max})\) then \((\vec\xi^{(h)}_t)_{t\in [0,T]}\) converges uniformly to \((\vec\xi^{(0)}_t)_{t\in [0,T]}\) as \(h\to 0\).

MSC:

45J05 Integro-ordinary differential equations
45M05 Asymptotics of solutions to integral equations
45G10 Other nonlinear integral equations
81T99 Quantum field theory; related classical field theories
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Ammari Z., Nier F.: Mean field limit for bosons and infinite dimensional phase-space analysis. Ann. Henri Poincaré 9(8), 1503-1574 (2008) · Zbl 1171.81014
[2] Ammari, Z., Nier, F.: Mean field limit for bosons and propagation of Wigner measures. J. Math. Phys. 50(4), 042107-042116 (2009) · Zbl 1214.81089
[3] Ammari, Z., Nier, F.: Mean field propagation of Wigner measures and BBGKY hierarchies for general bosonic states. J. Math. Pures Appl. (9) 95(6), 585-626 (2011) · Zbl 1251.81062
[4] Breteaux, S.: A geometric derivation of the linear Boltzmann equation for a particle interacting with a gaussian random field. arXiv:1107.0788 (2012)
[5] Hepp K.: The classical limit for quantum mechanical correlation functions. Comm. Math. Phys. 35, 265-277 (1974)
[6] Simon, B.: The \[{P(\phi)_2}\] Euclidean (quantum) field theory. Princeton University Press, Princeton (1974) (Princeton Series in Physics) · Zbl 1175.81146
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.