×

zbMATH — the first resource for mathematics

Global regularity of the two-dimensional magneto-micropolar fluid system with zero angular viscosity. (English) Zbl 1308.35232
Summary: We study the two-dimensional magneto-micropolar fluid system. Making use of the structure of the system, we show that with zero angular viscosity the solution triple remains smooth for all time.

MSC:
35Q35 PDEs in connection with fluid mechanics
35B65 Smoothness and regularity of solutions to PDEs
35Q86 PDEs in connection with geophysics
76A05 Non-Newtonian fluids
76W05 Magnetohydrodynamics and electrohydrodynamics
86A05 Hydrology, hydrography, oceanography
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] G. Ahmadi, Universal stability of magneto-micropolar fluid motions,, Int. J. Engng. Sci., 12, 657, (1974) · Zbl 0284.76009
[2] H. Brezis, A note on limiting cases of Sobolev embeddings and convolution inequalities,, Comm. Partial Differential Equations, 5, 773, (1980) · Zbl 0437.35071
[3] C. Cao, Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion,, Adv. Math., 226, 1803, (2011) · Zbl 1213.35159
[4] C. Cao, The 2D incompressible magnetohydrodynamics equations with only magnetic diffusion,, SIAM J. Math. Anal., 46, 588, (2014) · Zbl 1293.35233
[5] M. Chen, Global well-posedness of the 2D incompressible micropolar fluid flows with partial viscosity and angular viscosity,, Acta Math. Sci. Ser. B Engl. Ed., 33, 929, (2013) · Zbl 1299.35043
[6] Q. Chen, Global well-posedness for the micropolar fluid system in critical Besov spaces,, J. Differential Equations, 252, 2698, (2012) · Zbl 1234.35193
[7] J.-Y. Chemin, <em>Perfect Incompressible Fluids</em>,, Clarendon Press, (1998)
[8] B.-Q. Dong, Regularity criteria of weak solutions to the three-dimensional micropolar flows,, J. Math. Phys., 50, (2009) · Zbl 1283.76016
[9] B.-Q. Dong, Asymptotic profiles of solutions to the 2D viscous incompressible micropolar fluid flows,, Discrete Contin. Dyn. Syst., 23, 765, (2009) · Zbl 1170.35336
[10] B. Q. Dong, Pressure regularity criteria of the three-dimensional micropolar fluid flows,, Math. Methods Appl. Sci., 34, 595, (2011) · Zbl 1219.35189
[11] B.-Q. Dong, On the regularity criterion for three-dimensional micropolar fluid flows in Besov spaces,, Nonlinear Anal., 73, 2334, (2010) · Zbl 1194.35322
[12] B.-Q. Dong, Global regularity of the 2D micropolar fluid flows with zero angular viscosity,, J. Differential Equations, 249, 200, (2010) · Zbl 1402.35220
[13] A. C. Eringen, Simple microfluids,, Int. Engng. Sci., 2, 205, (1964) · Zbl 0136.45003
[14] A. C. Eringen, Theory of micropolar fluids,, J. Math. Mech., 16, 1, (1966) · Zbl 0145.21302
[15] G. P. Galdi, A note on the existence and uniqueness of solutions of the micropolar fluid equations,, Int. J. Engng. Sci., 15, 105, (1977) · Zbl 0351.76006
[16] H. Inoue, Strong solutions of magneto-micropolar fluid equation,, in Discrete and continuous dynamical systems, 439, (2002) · Zbl 1058.76075
[17] Q. Jiu, Global regularity of 2D generalized MHD equations with magnetic diffusion,, Z. Angew. Math. Phys., 1, (2014) · Zbl 1320.35281
[18] G. Lukaszewicz, On nonstationary flows of asymmetric fluids,, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 12, 83, (1988) · Zbl 0668.76045
[19] G. Lukaszewicz, On the existence, uniqueness and asymptotic properties for solutions of flows of asymmetric fluids,, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 13, 105, (1989) · Zbl 0759.58035
[20] G. Lukaszewicz, <em>Micropolar Fluids, Theory and Applications</em>,, Birkhäuser, (1999) · Zbl 0923.76003
[21] E. E. Ortega-Torres, Magneto-micropolar fluid motion: Global existence of strong solutions,, Abstr. Appl. Anal., 4, 109, (1999) · Zbl 0976.35055
[22] M. A. Rojas-Medar, Magneto-micropolar fluid motion: Existence and uniqueness of strong solutions,, Math. Nachr., 188, 301, (1997) · Zbl 0893.76006
[23] M. Sermange, Some mathematical questions related to the MHD equations,, Comm. Pure Appl. Math., 36, 635, (1983) · Zbl 0524.76099
[24] C. V. Tran, On global regularity of 2D generalized magnetohydrodynamics equations,, J. Differential Equations, 254, 4194, (2013) · Zbl 1283.35094
[25] Y. Wang, Regularity criterion for a weak solution to the three-dimensional magneto-micropolar fluid equations,, Bound. Value Probl., 2013, (2013) · Zbl 1288.35149
[26] J. Wu, The generalized MHD equations,, J. Differential Equations, 195, 284, (2003) · Zbl 1057.35040
[27] J. Wu, Global regularity for a class of generalized magnetohydrodynamic equations,, J. Math. Fluid Mech., 13, 295, (2011) · Zbl 1270.35371
[28] Z. Xiang, On the regularity criteria for the 3D magneto-micropolar fluids in terms of one directional derivative,, Bound. Value Probl., 139, (2012) · Zbl 1280.35118
[29] L. Xue, Wellposedness and zero microrotation viscosity limit of the 2D micropolar fluid equations,, Math. Methods Appl. Sci., 34, 1760, (2011) · Zbl 1222.76027
[30] N. Yamaguchi, Existence of global strong solution to the micropolar fluid system in a bounded domain,, Math. Meth. Appl. Sci., 28, 1507, (2005) · Zbl 1078.35096
[31] K. Yamazaki, Remarks on the global regularity of the two-dimensional magnetohydrodynamics system with zero dissipation,, Nonliear Anal., 94, 194, (2014) · Zbl 1282.35114
[32] K. Yamazaki, Global regularity of logarithmically supercritical MHD system with zero diffusivity,, Appl. Math. Lett., 29, 46, (2014) · Zbl 1320.35298
[33] K. Yamazaki, On the global regularity of two-dimensional generalized magnetohydrodynamics system,, J. Math. Anal. Appl., 416, 99, (2014) · Zbl 1300.35107
[34] K. Yamazaki, On the global regularity of N-dimensional generalized Boussinesq system,, Appl. Math. · Zbl 1363.35065
[35] K. Yamazaki, \((N-1)\) velocity components condition for the generalized MHD system in \(N\)-dimension,, Kinet. Relat. Models, 7, 779, (2014) · Zbl 1326.35292
[36] B. Yuan, Regularity of weak solutions to magneto-micropolar fluid equations,, Acta Math. Sci. Ser. B Engl. Ed., 30, 1469, (2010) · Zbl 1240.35421
[37] B. Yuan, On regularity criteria for weak solutions to the micropolar fluid equations in Lorentz space,, Proc. Amer. Math. Soc., 138, 2025, (2010) · Zbl 1191.35217
[38] B. Yuan, Remarks on global regularity of 2D generalized MHD equations,, J. Math. Anal. Appl., 413, 633, (2014) · Zbl 1311.35237
[39] J. Yuan, Existence theorem and blow-up criterion of the strong solutions to the magneto-micropolar fluid equations,, Math. Meth. Appl. Sci., 31, 1113, (2008) · Zbl 1137.76071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.