zbMATH — the first resource for mathematics

Convexity of parabolic subgroups in Artin groups. (English) Zbl 1308.20037
From the introduction: We establish the following theorem. Theorem 1.2. Let \(\Gamma\) be a Coxeter graph with vertex set \(S\), let \((A,\Sigma)\) be the corresponding Artin system, and let \(T\) be a subset of \(S\). Then \(A_T\) is a convex subgroup of \(A\) with respect to \(\Sigma\).
Although Theorem 1.2 may seem natural, it is a surprise for the experts. It follows from prior work of D. F. Holt and S. Rees [Proc. Lond. Math. Soc. (3) 104, No. 3, 486-512 (2012; Zbl 1275.20034); Groups Complex. Cryptol. 5, No. 1, 1-23 (2013; Zbl 1284.20036)] that the statement holds for Artin groups of large type (those with all \(m_{s,t}\geq 3\)) and a slightly more general class, ‘sufficiently large’ Artin groups. But as far as we know, it was not even known for the braid group \(\mathcal B_m\) embedded in \(\mathcal B_n\), although the proof in this case is easy (see Proposition 2.1). Theorem 1.2 also comes as a surprise because, in general, the family of standard generators (that is, \(\Sigma\)) is not the best for studying combinatorial questions on Artin groups. In the most well-understood case, when \(A\) is of spherical type, a larger generating set is generally used. This is called the set of simple elements and we denote it by \(\mathcal S\). It follows from [R. Charney, Math. Ann. 301, No. 2, 307-324 (1995; Zbl 0813.20042)] that \((A_T,\mathcal S_T)\) is isometrically embedded in \((A,\mathcal S)\), but the image is not convex since there are \(\mathcal S\)-geodesics for elements of \(A_T\) whose terms do not belong to \(\mathcal S_T\sqcup\mathcal S_T^{-1}\).

20F36 Braid groups; Artin groups
20F05 Generators, relations, and presentations of groups
20E07 Subgroup theorems; subgroup growth
20F65 Geometric group theory
Full Text: DOI arXiv
[1] Artin, Theorie der Zöpfe, Abh. Hamburg 4 pp 47– (1925) · JFM 51.0450.01 · doi:10.1007/BF02950718
[2] Artin, Theory of braids, Ann. of Math. 48 ((2)) pp 101– (1947) · Zbl 0030.17703 · doi:10.2307/1969218
[3] Behrstock, Thick metric spaces, relative hyperbolicity, and quasi-isometric rigidity, Math. Ann. 344 pp 543– (2009) · Zbl 1220.20037 · doi:10.1007/s00208-008-0317-1
[4] N. Bourbaki Eléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: Systèmes de racines Hermann Paris 1968
[5] K. S. Brown Buildings Springer New York 1989
[6] Charney, Geodesic automation and growth functions for Artin groups of finite type, Math. Ann. 301 pp 307– (1995) · Zbl 0813.20042 · doi:10.1007/BF01446631
[7] R. Charney M. W. Davis Finite K ( \(\pi\) , 1 ) ’s for Artin groups Princeton University Press Princeton, NJ 1995 110 124 · Zbl 0930.55006
[8] M. W. Davis The geometry and topology of Coxeter groups Princeton University Press Princeton, NJ 2008
[9] Godelle, K(\(\pi\),1) and word problems for infinite type Artin-Tits groups, and applications to virtual braid groups, Math. Z. 272 pp 1339– (2012) · Zbl 1300.20045 · doi:10.1007/s00209-012-0989-9
[10] E. Godelle L. Paris Basic questions on Artin-Tits groups Edizioni della Normale, Scuola Normale Superiore Pisa 2012 299 311 · Zbl 1282.20036
[11] Holt, Artin groups of large type are shortlex automatic with regular geodesics, Proc. London Math. Soc 104 pp 486– (2012) · Zbl 1275.20034 · doi:10.1112/plms/pdr035
[12] Holt, Shortlex automaticity and geodesic regularity in Artin groups, Groups Complex. Cryptol. 5 pp 1– (2013) · Zbl 1284.20036 · doi:10.1515/gcc-2013-0001
[13] van der Lek, The homotopy type of complex hyperplane complements (1983)
[14] Paris, K(\(\pi\),1) conjecture for Artin groups, Ann. Fac. Sci. Toulouse Math. Sér. 23 ((6)) pp 361– (2014) · Zbl 1306.20040 · doi:10.5802/afst.1411
[15] Salvetti, The homotopy type of Artin groups, Math. Res. Lett. 1 pp 565– (1994) · Zbl 0847.55011 · doi:10.4310/MRL.1994.v1.n5.a5
[16] J. Tits Groupes et géométries de Coxeter Institut des Hautes Études Scientifiques Paris 1961
[17] Tits, Normalisateurs de tores. I. Groupes de Coxeter étendus, J. Algebra 4 pp 96– (1966) · Zbl 0145.24703 · doi:10.1016/0021-8693(66)90053-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.