×

zbMATH — the first resource for mathematics

Admissibility for positive continuous-time descriptor systems. (English) Zbl 1307.93177
Summary: Positive descriptor systems are a new research branch in descriptor systems. This article is devoted to the study of the admissibility property for positive continuous-time descriptor systems. Based on Lyapunov inequality existed for stability of positive descriptor systems, we provide a necessary and sufficient condition to guarantee the admissibility via linear matrix inequalities (LMIs). Furthermore, a necessary and sufficient condition to guarantee the admissibility is established by means of generalised Lyapunov equation if c-monomial decomposition is applied to positive descriptor systems. Finally, examples are given to illustrate the validity of the results obtained.

MSC:
93C05 Linear systems in control theory
15B48 Positive matrices and their generalizations; cones of matrices
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1109/TCSII.2006.886888
[2] Back, J. and Astolfi, A. (2006), ’Existence Conditions and a Constructive Design of Positive Linear Observers for Positive Linear Systems’, inProceedings of the 45th IEEE Conference on Decision & Control, San Diego, CA, USA, December, pp. 4734–4739
[3] Bru R, Positive Systems pp 281– (2003)
[4] DOI: 10.1016/S0024-3795(02)00277-X · Zbl 1006.93006
[5] DOI: 10.1023/A:1019244121533
[6] DOI: 10.1007/3-540-34774-7_8
[7] DOI: 10.1080/00207720701683033 · Zbl 1138.93034
[8] DOI: 10.1016/j.sysconle.2006.10.021 · Zbl 1113.93012
[9] DOI: 10.1016/0024-3795(87)90076-0 · Zbl 0633.93008
[10] DOI: 10.1007/BFb0002475
[11] DOI: 10.1002/9781118033029
[12] DOI: 10.1002/rnc.1575 · Zbl 1207.93080
[13] Gantmacher FR, The Theory of Matrices (1959)
[14] DOI: 10.1007/3-540-34774-7_4
[15] DOI: 10.1080/00207720110065531 · Zbl 1026.93022
[16] Kaczorek T, Linear Control Systems: Analysis of Multivariable Systems (1992)
[17] Kaczorek T, Positive 1D and 2D systems (2001)
[18] Kaczorek T, Polynomial and Rational Matrices: Applications in dynamical Systems Theory (2007)
[19] DOI: 10.1002/3527603603
[20] DOI: 10.4171/017
[21] DOI: 10.1016/S0167-6911(01)00146-3 · Zbl 0986.93059
[22] Liu C, International Journal of Information and Systems Sciences 5 pp 311– (2009)
[23] Liu P, International Journal of Information and Systems Sciences 5 pp 392– (2009)
[24] Macheras P, Modeling in Biopharmaceutics, Pharmacokinetics, and Pharmacodynamics, Homogeneous and Heterogeneous Approaches (2006) · Zbl 1103.92023
[25] Niu H, International Journal of Information and Systems Sciences 6 pp 355– (2010)
[26] Valcher, ME. (2008), ’On the Reachability Properties of Continuous-time Positive Systems’, in16th Mediterranean Conference on Control and Automation Congress Centre, Ajaccio, France, June, pp. 990–995
[27] DOI: 10.1002/pamm.200610406
[28] Virnik, E. (2008a), ’Analysis of Positive Descriptor Systems’, Ph.D. dissertation, Technischen Universität Berlin, Institut für Mathematik · Zbl 1210.93007
[29] DOI: 10.1016/j.laa.2008.03.002 · Zbl 1147.93033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.