×

Hybrid modelling and constrained control of juggling systems. (English) Zbl 1307.93057

Summary: The goal of this article is to review the modelling framework for juggling systems by stressing the particularities of switching dynamics and to design a controller for the systems based on a reformulation of the model predictive control design. The main idea is to catch an impact during the prediction window at the desired level. One of the particularities is the on-line adaptation of the optimisation problem such that the receding prediction window assures the existence of an impact at a certain moment in absolute time. A constraints softening technique will be used to avoid the in-feasibility problems. In a first stage, the basic juggling system which consists of a ball and a juggling robot in one-dimensional case is detailed and subsequently the study is extended to the case of multiple balls juggling with two degrees of freedom. The simulation results demonstrate the performance of the presented approach.

MSC:

93A30 Mathematical modelling of systems (MSC2010)
93C30 Control/observation systems governed by functional relations other than differential equations (such as hybrid and switching systems)
93C55 Discrete-time control/observation systems
93B40 Computational methods in systems theory (MSC2010)

Software:

CPLEX
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1109/TAC.2002.805688 · Zbl 1364.93697 · doi:10.1109/TAC.2002.805688
[2] DOI: 10.1016/S0005-1098(98)00178-2 · Zbl 1049.93514 · doi:10.1016/S0005-1098(98)00178-2
[3] Borrelli F, Constrained Optimal Control of Linear and Hybrid Systems (2003) · Zbl 1030.49036
[4] Brogliato B, Nonsmooth Mechanics: Models, Dynamics, and Control (1999)
[5] DOI: 10.1109/9.839946 · Zbl 0982.70018 · doi:10.1109/9.839946
[6] CPLEX I, 11.0 Users Manual, IlOG SA (2008)
[7] DOI: 10.1080/00207720903366049 · Zbl 1200.49025 · doi:10.1080/00207720903366049
[8] DOI: 10.1016/j.automatica.2010.01.002 · Zbl 1194.93088 · doi:10.1016/j.automatica.2010.01.002
[9] Goodwin G, Constrained Control and Estimation: An Optimisation Approach (2005) · doi:10.1007/b138145
[10] DOI: 10.1080/00207729208949190 · Zbl 0777.93089 · doi:10.1080/00207729208949190
[11] Kobayashi, K., and Imura, J. (2006), ’Modeling of Discrete Dynamics for Computational Time Reduction of Model Predictive Control’, inProceedings of the 17th International Symposium on Mathematical Theory of Networks and Systems, Kyoto, Japan, pp. 628–633
[12] Kvasnica M, Hybrid Systems: Computation and Control 2993 pp 121– (2004)
[13] DOI: 10.1016/j.automatica.2008.06.007 · Zbl 1154.93429 · doi:10.1016/j.automatica.2008.06.007
[14] Lovaas, C., Seron, M., and Goodwin, G. (2008), ’Robust Output-feedback MPC with Soft State Constraints’, in17th IFAC World Congress, Seoul, Korea
[15] DOI: 10.1016/S0005-1098(99)00214-9 · Zbl 0949.93003 · doi:10.1016/S0005-1098(99)00214-9
[16] DOI: 10.1016/j.na.2005.08.033 · Zbl 1096.49017 · doi:10.1016/j.na.2005.08.033
[17] Olaru, S., and Niculescu, S. (2008), ’Predictive Control for Linear Systems with Delayed Input Subject to Constraints’, inProceedings of the IFAC World Congress, Seoul, Korea
[18] Sanfelice , R , Teel , A and Sepulchre , R . A Hybrid Systems Approach to Trajectory Tracking Control for Juggling Systems . Proceedings of the 46th IEEE Conference on Decision and Control . 2007 . pp. 5282 – 5287 . · doi:10.1109/CDC.2007.4435010
[19] DOI: 10.1109/TCST.2004.824309 · doi:10.1109/TCST.2004.824309
[20] DOI: 10.1023/A:1008346825330 · Zbl 0922.93029 · doi:10.1023/A:1008346825330
[21] DOI: 10.1016/S0005-1098(01)00061-9 · Zbl 1012.93045 · doi:10.1016/S0005-1098(01)00061-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.