×

zbMATH — the first resource for mathematics

Numerical solution of transient heat conduction problems using improved meshless local Petrov-Galerkin method. (English) Zbl 1307.80008
A new formulation of the improved meshless local Petrov-Galerkin method is successfully applied to transient heat conduction problems. This approach is in the use of moving Kriging interpolation as the trail function, therefore, the essential boundary conditions can be enforced as the finite element method, and the Heaviside step function as the test function of the local weighted residual method. Some test problems are presented.

MSC:
80M25 Other numerical methods (thermodynamics) (MSC2010)
80A20 Heat and mass transfer, heat flow (MSC2010)
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
80M10 Finite element, Galerkin and related methods applied to problems in thermodynamics and heat transfer
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Minkowycz, W. J.; Sparrow, E. M.; Schneider, G. E.; Pletcher, R. H., Handbook of numerical heat transfer, (1988), John Wiley and Sons, Inc. New York
[2] S.J. Owen, A survey of unstructured mesh generation technology, in: Proceedings of Seventh International Meshing Round Table, Sandia National Laboratories, 1998, pp. 239-267.
[3] Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P., Meshless methods: an overview and recent developments, Comput. Methods Appl. Mech. Eng., 139, 3-47, (1996) · Zbl 0891.73075
[4] Belytschko, T.; Lu, Y. Y.; Gu, L., Element-free Galerkin methods, Int. J. Numer. Meth. Eng., 37, 229-256, (1994) · Zbl 0796.73077
[5] Chen, L.; Cheng, Y. M., The complex variable reproducing kernel particle method for two-dimensional elastodynamic, Chin. Phys. B, 19, 090204, (2010)
[6] Liu, W. K.; Chen, Y. J., Wavelet and multiple scale reproducing kernel methods, Int. J. Numer. Meth. Fluids, 21, 901-931, (1995) · Zbl 0885.76078
[7] Cheng, Y. M.; Peng, M. J., Boundary element-free method for elastodynamics, Sci. China Ser. G Phys. Mech. Astron., 48, 641-657, (2005)
[8] Singh, I. V., A numerical solution of composite heat transfer problems using meshless method, Int. J. Heat Mass Transfer, 47, 2123-2138, (2004) · Zbl 1050.80006
[9] Singh, I. V.; Tanaka, M., Heat transfer analysis of composite slabs using meshless element free Galerkin method, Comput. Mech., 38, 521-532, (2006) · Zbl 1168.80309
[10] Singh, A.; Singh, I. V.; Prakash, R., Meshless analysis of unsteady-state heat transfer in semi-infinite solid with temperature-dependent thermal conductivity, Int. J. Heat Mass Transfer, 33, 231-239, (2006)
[11] Singh, A.; Singh, I. V.; Prakash, R., Numerical solution of temperature-dependent thermal conductivity problems using a meshless method, Numer. Heat Transfer Part A, 50, 125-145, (2006)
[12] Cheng, R. J.; Liew, K. M., The reproducing kernel particle method for two-dimensional unsteady heat conduction problems, Comput. Mech., 45, 1-10, (2009) · Zbl 1398.74065
[13] Atluri, S. N.; Zhu, T., A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics, Comput. Mech., 22, 17-27, (1998) · Zbl 0932.76067
[14] Liu, L. H., Meshless method for radiation heat transfer in graded index medium, Int. J. Heat Mass Transfer, 49, 219-229, (2006) · Zbl 1189.80050
[15] Wu, X. H.; Tao, W. Q., Meshless method based on the local weak-forms for steady-state heat conduction problems, Int. J. Heat Mass Transfer, 51, 3103-3112, (2008) · Zbl 1144.80356
[16] Li, Q. H.; Chen, S. S.; Kou, G. X., Transient heat conduction analysis using the MLPG method and modified precise time step integration method, J. Comput. Phys., 230, 2736-2750, (2011) · Zbl 1218.65108
[17] Sladek, J.; Sladek, V.; Atluri, S. N., Meshless local Petrov-Galerkin method for heat conduction problems in an anisotropic medium, CMES-Comput. Model. Eng. Sci., 6, 309-318, (2004) · Zbl 1084.80002
[18] Qian, L. F.; Batra, R. C., Three-dimensional transient heat conduction in a functionally graded thick plate with a higher-order plate theory and a meshless local Petrov-Galerkin method, Comput. Mech., 35, 214-226, (2005) · Zbl 1143.74321
[19] Peng, M. J.; Cheng, Y. M., A boundary element-free method (BEFM) for two-dimensional potential problems, Eng. Anal. Bound. Elem., 33, 77-82, (2009) · Zbl 1160.65348
[20] Lancaster, P.; Salkauskas, K., Surface generated by moving least squares method, Math. Comput., 37, 141-158, (1981) · Zbl 0469.41005
[21] Gu, L., Moving Kriging interpolation and element-free Galerkin method, Int. J Numer. Meth. Eng., 56, 1-11, (2003) · Zbl 1062.74652
[22] Tongsuk, P.; Kanok-Nukulchai, W., Further investigation of element-free Galerkin method using moving Kriging interpolation, Int. J. Comput. Meth., 1, 345-364, (2004) · Zbl 1179.74182
[23] Bui, T. Q.; Ngoc Nguyen, M.; Zhang, C., A moving Kriging interpolation-based element-free Galerkin method for structural dynamic analysis, Comput. Method Appl. Mech. Eng., 200, 1354-1366, (2011) · Zbl 1228.74110
[24] Bui, T. Q.; Nguyen, N. T.; Nguyen-Dang, H., A moving Kriging interpolation-based meshless method for numerical simulation of Kirchhoff plate problems, Int. J. Numer. Meth. Eng., 77, 1371-1395, (2009) · Zbl 1156.74391
[25] Zhu, P.; Liew, K. M., Free vibration analysis of moderately thick functionally graded plates by local Kriging meshless method, Compos. Struct., 93, 2925-2944, (2011)
[26] Sayakoummane, V.; Kanok-Nukulchai, W., A meshless analysis of shells based on moving Kriging interpolation, Int. J. Comput. Meth., 4, 543-565, (2007) · Zbl 1257.74182
[27] Lam, K. Y.; Wang, Q. X.; Li, H., A novel meshless approach-local Kriging (lokriging) method with two-dimensional structural analysis, Comput. Mech., 33, 235-244, (2004) · Zbl 1067.74074
[28] Gu, Y. T.; Wang, Q. X.; Lam, K. Y., A meshless local Kriging method for large deformation analysis, Comput. Meth. Appl. Mech. Eng., 196, 1673-1684, (2007) · Zbl 1173.74471
[29] Dai, K. Y.; Liu, G. R.; Lim, K. M.; Gu, Y. T., Comparison between the radial point interpolation and the Kriging interpolation used in meshfree methods, Comput. Mech., 32, 60-70, (2003) · Zbl 1035.74059
[30] Li, H.; Wang, Q. X.; Lam, K. Y., Development of a novel meshless local Kriging (lokriging) method for structural dynamic analysis, Comput. Meth. Appl. Mech. Eng., 193, 2599-2619, (2004) · Zbl 1067.74598
[31] Zheng, B. J.; Dai, B. D., Improved meshless local Petrov-Galerkin method for two-dimensional potential problems, Acta Phys. Sin., 59, 5182-5189, (2010), (in Chinese)
[32] Zheng, B. J.; Dai, B. D., A meshless local moving Kriging method for two-dimensional solids, Appl. Math. Comput., 218, 563-573, (2011) · Zbl 1275.74033
[33] Li, X. G.; Dai, B. D.; Wang, L. H., A moving Kriging interpolation-based boundary node method for two-dimensional potential problems, Chin. Phys. B, 19, 12020, (2010)
[34] Chen, L.; Cheng, Y. M., The complex variable reproducing kernel particle method for transient heat conduction problems, Acta Phys. Sin., 10, 6047-6055, (2008), (in Chinese) · Zbl 1187.80046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.