zbMATH — the first resource for mathematics

Modeling phase transition for compressible two-phase flows applied to metastable liquids. (English) Zbl 1307.76079
Summary: The seven-equation model for two-phase flows is a full non-equilibrium model, each phase has its own pressure, velocity, temperature, etc. A single value for each property, an equilibrium value, can be achieved by relaxation methods. This model has better features than other reduced models of equilibrium pressure for the numerical approximations in the presence of non-conservative terms. In this paper we modify this model to include the heat and mass transfer. We insert the heat and mass transfer through temperature and Gibbs free energy relaxation effects. New relaxation terms are modeled and new procedures for the instantaneous temperature and Gibbs free energy relaxation toward equilibrium is proposed. For modeling such relaxation terms, our idea is to make use of the assumptions that the mechanical properties, the pressure and the velocity, relax much faster than the thermal properties, the temperature and the Gibbs free energy, and the ratio of the Gibbs free energy relaxation time to the temperature relaxation time is extremely high. All relaxation processes are assumed to be instantaneous, i.e. the relaxation times are very close to zero. The temperature and the Gibbs free energy relaxation are used only at the interfaces. By these modifications we get a new model which is able to deal with transition fronts, evaporation fronts, where heat and mass transfer occur. These fronts appear as extra waves in the system. We use the same test problems on metastable liquids as in [R. Saurel, F. Petitpas and R. Abgrall, “Modeling phase transition in metastable liquids: application to cavitating and flashing flows”, J. Fluid Mech. 607, 313–350 (2008; doi:10.1017/S0022112008002061)]. We have almost similar results. Computed results are compared to the experimental ones of J. R. Simões-Moreira andJ. E. Shepherd [J. Fluid Mech. 382, 63–86 (1999; Zbl 0953.76508)]. A reasonable agreement is achieved. In addition we consider the six-equation model with a single velocity which is obtained from the seven-equation model in the asymptotic limit of zero velocity relaxation time. The same procedure for the heat and mass transfer is used with the six-equation model and a comparison is made between the results of this model with the results of the seven-equation model.

76T10 Liquid-gas two-phase flows, bubbly flows
80A22 Stefan problems, phase changes, etc.
76N99 Compressible fluids and gas dynamics
PDF BibTeX Cite
Full Text: DOI
[1] Abgrall, R., How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach, J. comput. phys., 125, 1, 150-160, (1996) · Zbl 0847.76060
[2] N. Andrianov, Analytical and Numerical Investigation of Two-phase Flows, Ph.D. Thesis, Otto-von-Guericke University, 2003.
[3] Andrianov, N.; Saurel, R.; Warnecke, G., A simple method for compressible multiphase mixtures and interfaces, Int. J. numer. methods fluids, 41, 109-131, (2003) · Zbl 1025.76025
[4] Baer, M.R.; Nunziato, J.W., A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials, Int. J. multiphase flows, 12, 861-889, (1986) · Zbl 0609.76114
[5] Bilicki, Z.; Kwidzinski, R.; Mohammadein, SA., An estimation of a relaxation time of heat and mass exchange in the liquid-vapour bubble flow, Int. J. heat mass transfer, 39, 4, 753759, (1996)
[6] Chen, G.Q.; Levermore, C.D.; Liu, T.P., Hyperbolic conservation laws with stiff relaxation terms and entropy, Commun. pure appl. math., 47, 787-830, (1994) · Zbl 0806.35112
[7] Chinnayya, A.; Daniel, E.; Saurel, R., Modelling detonation waves in heterogeneous energetic materials, J. comput. phys., 196, 2, 490-538, (2004) · Zbl 1109.76335
[8] Davis, S.F., Simplified second-order Godunov-type methods, SIAM J. sci. statist. comput., 9, 445-473, (1988) · Zbl 0645.65050
[9] Drew, D.A., Mathematical modeling of two-phase flow, Ann. rev. fluid mech., 15, 261-291, (1983) · Zbl 0569.76104
[10] Drew, D.A.; Passman, S.L., Theory of multicomponent fluids, Applied mathematical sciences, vol. 135, (1998), Springer New York · Zbl 0919.76003
[11] Embid, P.; Baer, M., Mathematical analysis of a two-phase continuum mixture theory, Continuum mech. thermodyn., 4, 279-312, (1992) · Zbl 0760.76096
[12] Gallouët, T.; Masella, J.M., Un schéma de Godunov approaché, Comptes rendus académie des sciences Paris, Série I, 323, 7784, (1996)
[13] H. Guillard, M. Labois, Numerical modeling of compressible two-phase flows, in: P. Wesseling, E. Onate, J. Priaux (Ed.), European Conference on Computational Fluid Dynamics ECCOMAS CFD, 2006.
[14] Ishii, M.; Hibiki, T., Thermo fluid dynamics of two-phase flow, (2006), Springer Science+Business Media, Inc. · Zbl 1204.76002
[15] Kapila, A.K.; Menikoff, R.; Bdzil, J.B.; Son, S.F.; Stewart, D.S., Two-phase modelling of DDT in granular materials: reduced equations, Phys. fluids, 13, 3002-3024, (2001) · Zbl 1184.76268
[16] M. Labois, Modélisation des déséquilibres mécaniques pour les écoulements diphasiques: approches par relaxation et par modèle réduit, Ph.D. Thesis, Université de Provence - Aix-Marseille I, 2008.
[17] Lallemand, M.H.; Chinnayya, A.; Le Metayer, O., Pressure relaxation procedures for multiphase compressible flows, Int. J. numer. methods fluids, 49, 1, 1-56, (2005) · Zbl 1073.76056
[18] M.H. Lallemand, R. Saurel, Pressure Relaxation Procedures for Multi-phase Compressible Flows, Technical Report 4038, INRIA, 2000.
[19] Menikoff, R.; Plohr, B.J., The Riemann problem for fluid flow of real materials, Rev. mod. phys., 61, 1, 75-130, (1989) · Zbl 1129.35439
[20] Le Metayer, O.; Massoni, J.; Saurel, R., Elaborating equations of state of a liquid and its vapor for two-phase flow models (in French), Int. J. therm. sci., 43, 3, 265276, (2004)
[21] Le Metayer, O.; Massoni, J.; Saurel, R., Modelling evaporation fronts with reactive Riemann solvers, J. comput. phys., 205, 567-610, (2005) · Zbl 1088.76051
[22] Müller, I.; Müller, W.H., Fundamentals of thermodynamics and applications: with historical annotations and many citations from avogadro to Zermelo, (2009), Springer-Verlag Berlin Heidelberg · Zbl 1168.80001
[23] Murrone, A.; Guillard, H., A five-equation reduced model for compressible two-phase flow problems, J. comput. phys., 202, 2, 664-698, (2005) · Zbl 1061.76083
[24] Petitpas, F.; Franquet, E.; Saurel, R.; Le Metayer, O., A relaxation – projection method for compressible flows. part II: artificial heat exchanges for multiphase shocks, J. comput. phys. arch., 225, 2, 2214-2248, (2007) · Zbl 1183.76831
[25] Petitpas, F.; Massoni, J.; Saurel, R.; Lapebie, E.; Munier, L., Diffuse interface models for high speed cavitating underwater systems, Int. J. multiphase flows, 35, 8, 747-759, (2009)
[26] Petitpas, F.; Saurel, R.; Franquet, E.; Chinnayya, A., Modelling detonation waves in condensed materials: multiphase CJ conditions and multidimensional computations, Shock waves, 19, 377-401, (2009) · Zbl 1255.76063
[27] Saurel, R.; Abgrall, R., A multiphase Godunov method for compressbile multifluid and multiphase flows, J. comput. phys., 150, 2, 425-467, (1999) · Zbl 0937.76053
[28] Saurel, R.; Abgrall, R., A simple method for compressible multifluid flows, SIAM J. sci. comput., 21, 1115-1145, (1999) · Zbl 0957.76057
[29] Saurel, R.; Franquet, E.; Daniel, E.; Le Metayer, O., A relaxation – projection method for compressible flows. part I: the numerical equation of state for the Euler equations, J. comput. phys., 223, 2, 822-845, (2007) · Zbl 1183.76840
[30] Saurel, R.; Gavrilyuk, S.; Renaud, F., A multiphase model with internal degree of freedom, application to shock – bubble interaction, J. fluid mech., 495, 283-321, (2003) · Zbl 1080.76062
[31] Saurel, R.; Le Metayer, O., A multiphase model for interfaces, shocks, detonation waves and cavitation, J. fluid mech., 431, 239-271, (2001) · Zbl 1039.76069
[32] Saurel, R.; Le Metayer, O.; Massoni, J.; Gavrilyuk, S., Shock jump relations for multiphase mixtures with stiff mechanical properties, Shock waves, 16, 209-232, (2007) · Zbl 1195.76245
[33] Saurel, R.; Petitpas, F.; Abgrall, R., Modelling phase transition in metastable liquids: application to cavitating and flashing flows, J. fluid mech., 607, 313-350, (2008) · Zbl 1147.76060
[34] Saurel, R.; Petitpas, F.; Berry, R.A., Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures, J. comput. phys., 228, 5, 1678-1712, (2009) · Zbl 1409.76105
[35] J.R. Simões-Moreira, Adiabatic Evaporation Waves, Ph.D. Thesis, Rensselaer Polytechnic Institute, 1994.
[36] Simões-Moreira, J.R.; Shepherd, J.E., Evaporation waves in superheated dodecane, J. fluid mech., 382, 63-86, (1999) · Zbl 0953.76508
[37] Strang, G., On the construction and comparison of difference schemes, SIAM J. numer. anal., 5, 506-517, (1968) · Zbl 0184.38503
[38] Toro, E.F., Riemann solvers and numerical methods for fluid dynamics, (1999), Springer Berlin · Zbl 0923.76004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.