zbMATH — the first resource for mathematics

R\(\nu\)MDM and lepton flavor violation. (English) Zbl 1306.81369
Summary: A model relating radiative seesaw and minimal dark matter mass scales without beyond the standard model (SM) gauge symmetry (R\(\nu\)MDM) is constructed. In addition to the SM particles, the R\(\nu\)MDM contains, a Majorana fermion multiplet \(N_{R}\) and scalar multiplet \(\chi\) that transform respectively as (1, 5, 0) and (1, 6, -1/2) under the SM gauge group \(\operatorname{SU}(3)_{C}\times\operatorname{SU}(2)_{L}\times\operatorname{U}(1)_{Y}\). The neutral component \(N_R^0\) plays the role of dark matter with a mass in the range of 9 to 10 TeV. This scale also sets the lower limit for the scale for the heavy degrees of freedom in \(N_{R}\) and \(\chi\) which generate light neutrino masses through the radiative seesaw mechanism. The model predicts an \(N_R^0\)-nucleus scattering cross section that would be accessible with future dark matter direct detection searches as well as observable effects in present and searches for charged lepton flavor violating processes, such as \(l_{} \to l_{j}\gamma\) and \(\mu - e\) conversion.

81V15 Weak interaction in quantum theory
81V22 Unified quantum theories
83F05 Relativistic cosmology
Full Text: DOI arXiv
[1] Particle Data Group collaboration; Nakamura, K.; etal., Review of particle physics, J. Phys., G 37, 075021, (2010)
[2] Bertone, G.; Hooper, D.; Silk, J., Particle dark matter: evidence, candidates and constraints, Phys. Rept., 405, 279, (2005)
[3] Silveira, V.; Zee, A., Scalar phantoms, Phys. Lett., B 161, 136, (1985)
[4] McDonald, J., Gauge singlet scalars as cold dark matter, Phys. Rev., D 50, 3637, (1994)
[5] Holz, DE; Zee, A., Collisional dark matter and scalar phantoms, Phys. Lett., B 517, 239, (2001)
[6] He, X-G; Li, T.; Li, X-Q; Tsai, H-C, Scalar dark matter effects in Higgs and top quark decays, Mod. Phys. Lett., A 22, 2121, (2007)
[7] O’Connell, D.; Ramsey-Musolf, MJ; Wise, MB, Minimal extension of the standard model scalar sector, Phys. Rev., D 75, 037701, (2007)
[8] Barger, V.; Langacker, P.; McCaskey, M.; Ramsey-Musolf, MJ; Shaughnessy, G., LHC phenomenology of an extended standard model with a real scalar singlet, Phys. Rev., D 77, 035005, (2008)
[9] Barger, V.; Langacker, P.; McCaskey, M.; Ramsey-Musolf, M.; Shaughnessy, G., Complex singlet extension of the standard model, Phys. Rev., D 79, 015018, (2009)
[10] Carroll, SM; Mantry, S.; Ramsey-Musolf, MJ, Implications of a scalar dark force for terrestrial experiments, Phys. Rev., D 81, 063507, (2010)
[11] He, X-G; Li, T.; Li, X-Q; Tandean, J.; Tsai, H-C, The simplest dark-matter model, CDMS II results and Higgs detection at LHC, Phys. Lett., B 688, 332, (2010)
[12] He, X-G; Ho, S-Y; Tandean, J.; Tsai, H-C, Scalar dark matter and standard model with four generations, Phys. Rev., D 82, 035016, (2010)
[13] Cai, Y.; He, X-G; Ren, B., Low mass dark matter and invisible Higgs width in darkon models, Phys. Rev., D 83, 083524, (2011)
[14] Cirelli, M.; Fornengo, N.; Strumia, A., Minimal dark matter, Nucl. Phys., B 753, 178, (2006)
[15] Cerilli, M.; Strumia, A., Minimal dark matter: model and results, New. J. Phys., 11, 105005, (2009)
[16] Minkowski, P., Μ → e γ at a rate of one out of 1-billion muon decays?, Phys. Lett., B 67, 421, (1977)
[17] T. Yanagida, Horizontal symmetry and masses of neutrinos, in Proceedings of the Workshop on Unified Theories and Baryon Number in the Universe, O. Sawada and A. Sugamoto eds. , KEK report 79-18 (1979).
[18] M. Gell-Mann, P. Ramond, R. Slansky, Complex spinors and unified theories, in Supergravity, P. van Nieuwenhuizen, D. Freedman eds., North Holland, Amsterdam The Netherlands (1979).
[19] Glashow, SL; Levy, M. (ed.); Basdevant, J-L (ed.); Speiser, D. (ed.); Weyers, J. (ed.); Gastmans, R. (ed.); Jacobs, M. (ed.), The future of elementary particle physics, (1980), New York U.S.A
[20] Barbieri, R.; Nanopoulos, DV; Morchio, G.; Strocchi, F., Neutrino masses in grand unified theories, Phys. Lett., B 90, 91, (1980)
[21] Mohapatra, RN; Senjanović, G., Neutrino mass and spontaneous parity violation, Phys. Rev. Lett., 44, 912, (1980)
[22] Lazarides, G.; Shafi, Q.; Wetterich, C., Proton lifetime and fermion masses in an SO(10) model, Nucl. Phys., B 181, 287, (1981)
[23] Konetschny, W.; Kummer, W., Nonconservation of total lepton number with scalar bosons, Phys. Lett., B 70, 433, (1977)
[24] Cheng, T.; Li, L-F, Neutrino masses, mixings and oscillations in SU(2) × U(1) models of electroweak interactions, Phys. Rev., D 22, 2860, (1980)
[25] Lazarides, G.; Shafi, Q.; Wetterich, C., Proton lifetime and fermion masses in an SO(10) model, Nucl. Phys., B 181, 287, (1981)
[26] Schechter, J.; Valle, J., Neutrino masses in SU(2) × U(1) theories, Phys. Rev., D 22, 2227, (1980)
[27] Mohapatra, RN; Senjanović, G., Neutrino masses and mixings in gauge models with spontaneous parity violation, Phys. Rev., D 23, 165, (1981)
[28] Foot, R.; Lew, H.; He, X.; Joshi, GC, Seesaw neutrino masses induced by a triplet of leptons, Z. Phys., C 44, 441, (1989)
[29] A. Zee, A theory of lepton number violation, neutrino Majorana mass and oscillation, Phys. Lett. B 93 (1980) 389 [Erratum ibid. B 95 (1980) 461] [INSPIRE].
[30] Ma, E., Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev., D 73, 077301, (2006)
[31] Ma, E., Supersymmetric U(1) gauge realization of the dark scalar doublet model of radiative neutrino mass, Mod. Phys. Lett., A 23, 721, (2008)
[32] Ma, E.; Suematsu, D., Fermion triplet dark matter and radiative neutrino mass, Mod. Phys. Lett., A 24, 583, (2009)
[33] Gu, P-H; Sarkar, U., Radiative seesaw in left-right symmetric model, Phys. Rev., D 78, 073012, (2008)
[34] Cao, Q-H; Ma, E.; Shaughnessy, G., Dark matter: the leptonic connection, Phys. Lett., B 673, 152, (2009)
[35] Suematsu, D.; Toma, T.; Yoshida, T., Reconciliation of CDM abundance and μ → eγ in a radiative seesaw model, Phys. Rev., D 79, 093004, (2009)
[36] Fileviez Perez, P.; Wise, MB, On the origin of neutrino masses, Phys. Rev., D 80, 053006, (2009)
[37] Adulpravitchai, A.; Gu, P-H; Lindner, M., Connections between the seesaw and dark matter searches, Phys. Rev., D 82, 073013, (2010)
[38] Li, T.; Chao, W., Neutrino masses, dark matter and B-L symmetry at the LHC, Nucl. Phys., B 843, 396, (2011)
[39] Kanemura, S.; Seto, O.; Shimomura, T., Masses of dark matter and neutrino from TeV scale spontaneous U(1)_{B−L} breaking, Phys. Rev., D 84, 016004, (2011)
[40] Parida, MK, Radiative seesaw in SO(10) with dark matter, Phys. Lett., B 704, 206, (2011)
[41] Sher, M., Electroweak Higgs potentials and vacuum stability, Phys. Rept., 179, 273, (1989)
[42] J. Casas, J. Espinosa and M. Quirós, Improved Higgs mass stability bound in the standard model and implications for supersymmetry, Phys. Lett. B 342 (1995) 171 [hep-ph/9409458] [INSPIRE].
[43] Hambye, T.; Riesselmann, K., Matching conditions and Higgs mass upper bounds revisited, Phys. Rev., D 55, 7255, (1997)
[44] Gonderinger, M.; Ramsey-Musolf, MJ, Electron-to-tau lepton flavor violation at the electron-ion collider, JHEP, 11, 045, (2010)
[45] Tucker-Smith, D.; Weiner, N., Inelastic dark matter, Phys. Rev., D 64, 043502, (2001)
[46] Tucker-Smith, D.; Weiner, N., Inelastic dark matter at DAMA, CDMS and future experiments, Nucl. Phys. Proc. Suppl., 124, 197, (2003)
[47] Tucker-Smith, D.; Weiner, N., The status of inelastic dark matter, Phys. Rev., D 72, 063509, (2005)
[48] Chang, S.; Kribs, GD; Tucker-Smith, D.; Weiner, N., Inelastic dark matter in light of DAMA/LIBRA, Phys. Rev., D 79, 043513, (2009)
[49] T. Hambye, F.-S. Ling, L. Lopez Honorez and J. Rocher, Scalar multiplet dark matter, JHEP07 (2009) 090 [Erratum ibid. 1005 (2010) 066] [arXiv:0903.4010] [INSPIRE].
[50] Barbieri, R.; Hall, LJ; Rychkov, VS, Improved naturalness with a heavy Higgs: an alternative road to LHC physics, Phys. Rev., D 74, 015007, (2006)
[51] Lopez Honorez, L.; Nezri, E.; Oliver, JF; Tytgat, MH, The inert doublet model: an archetype for dark matter, JCAP, 02, 028, (2007)
[52] Hambye, T.; Tytgat, MH, Electroweak symmetry breaking induced by dark matter, Phys. Lett., B 659, 651, (2008)
[53] Lopez Honorez, L.; Yaguna, CE, A new viable region of the inert doublet model, JCAP, 01, 002, (2011)
[54] Aprile, E.; Baudis, L.; f.t. X. Collaboration, Status and sensitivity projections for the XENON100 dark matter experiment, PoS, IDM2008, 018, (2008)
[55] CDMS-II collaboration; Brink, PL; etal., Beyond the CDMS-II dark matter search: supercdms, eConf, C 041213, 2529, (2004)
[56] Harrison, P.; Perkins, D.; Scott, W., Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett., B 530, 167, (2002)
[57] Xing, Z-z, Nearly tri bimaximal neutrino mixing and CP-violation, Phys. Lett., B 533, 85, (2002)
[58] He, XG; Zee, A., Some simple mixing and mass matrices for neutrinos, Phys. Lett., B 560, 87, (2003)
[59] MEG collaboration; Adam, J.; etal., New limit on the lepton-flavour violating decay μ\^{}{+} → e\^{}{+}γ, Phys. Rev. Lett., 107, 171801, (2011)
[60] MEG collaboration; Sawada, R., Analysis of the MEG experiment to search for μ\^{}{+} → e\^{}{+}γ decays, PoS, ICHEP2010, 263, (2010)
[61] Mu2E collabaration, J.P. Miller, Proposal to Search for μ\^{}{−}\(N\) → \(e\)\^{}{−}N with a single event sensitivity below 10\^{}{−16}, FERMILAB-PROPOSAL-0973 (2008).
[62] COMET collaboration, Y. Kuno et al., An experimental search for lepton flavor violating μe conversion at sensitivity of 10\^{}{−16}with a slow-extracted bunched beam, COMET proposal (2007).
[63] PRISM/PRIME group, Y. Kuno et al., An experimental search for a μ − e conversion at sensitivity of the order of 10\^{}{−18}with a highly intense muon source: PRISM J-PARC Letter of Intent (2006).
[64] Deshpande, N.; Enkhbat, T.; Fukuyama, T.; He, X-G; Tsai, L-H; etal., Μ − e conversion with four generations, Phys. Lett., B 703, 562, (2011)
[65] R. Kitano, M. Koike and Y. Okada, Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei, Phys. Rev. D 66 (2002) 096002 [Erratum ibid. D 76 (2007) 059902] [hep-ph/0203110] [INSPIRE].
[66] SNO collaboration; Aharmim, B.; etal., Low energy threshold analysis of the phase I and phase II data sets of the sudbury neutrino observatory, Phys. Rev., C 81, 055504, (2010)
[67] MINOS collaboration; Adamson, P.; etal., Measurement of neutrino oscillations with the MINOS detectors in the numi beam, Phys. Rev. Lett., 101, 131802, (2008)
[68] Bernardis, F.; Serra, P.; Cooray, A.; Melchiorri, A., An improved limit on the neutrino mass with CMB and redshift-dependent halo bias-mass relations from SDSS, DEEP2 and lyman-break galaxies, Phys. Rev., D 78, 083535, (2008)
[69] T. Aushev, W. Bartel, A. Bondar, J. Brodzicka, T. Browder, et al., Physics at super B factory, arXiv:1002.5012 [INSPIRE].
[70] Beda, A.; Demidova, E.; Starostin, A.; Brudanin, V.; Egorov, V.; etal., GEMMA experiment: three years of the search for the neutrino magnetic moment, Phys. Part. Nucl. Lett., 7, 406, (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.