×

zbMATH — the first resource for mathematics

Fracture of a finite piezoelectric layer with a penny-shaped crack. (English) Zbl 1306.74054
Summary: This paper studies a penny-shaped crack in a finite thickness piezoelectric material layer. The piezoelectric medium is subjected to a thermal flux on its top and bottom surfaces. Both thermally insulated crack and heated crack are considered. Numerical solution for the finite layer thickness is obtained through the solution of a pair of dual integral equations. The result reduces to the closed form solution when the thickness of the piezoelectric layer becomes infinite. Exact expressions for the stress and electric displacement at the crack border are given as a function of the stress intensity factor, which is determined by the applied thermal flux. This paper is useful for the reliability design of piezoelectric materials in thermal environments.

MSC:
74R10 Brittle fracture
74F15 Electromagnetic effects in solid mechanics
74F05 Thermal effects in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bermejo R, Grunbichler H, Kreith J, Auer C (2010) Fracture resistance of a doped PZT ceramic for multilayer piezoelectric actuators: effect of mechanical load and temperature. J Eur Ceramic Soc 30: 705–712 · doi:10.1016/j.jeurceramsoc.2009.08.013
[2] Chen CD (2006) On the singularities of the thermo-electro-elastic fields near the apex of a piezoelectric bonded wedge. Int J Solids Struct 43: 957–981 · Zbl 1119.74398 · doi:10.1016/j.ijsolstr.2005.03.011
[3] Chen WQ, Shioya T (1999) Fundamental solution for a penny-shaped crack in a piezoelectric medium. J Mech Phys Solids 47: 1459–1475 · Zbl 0959.74019 · doi:10.1016/S0022-5096(98)00114-8
[4] Dunn ML (1994) The effects of crack face boundary conditions on the fracture of piezoelectric solids. Eng Fract Mech 48: 25–39 · doi:10.1016/0013-7944(94)90140-6
[5] Fulton CC, Gao H (2001) Effect of local polarization switching on piezoelectric fracture. J Mech Phys Solids 49: 927–952 · Zbl 1024.74019 · doi:10.1016/S0022-5096(00)00049-1
[6] Gao H, Barnett DM (1996) An invariance property of local energy release rate in a strip saturation model of piezoelectric fracture. Int J Fract 79: R25–R29 · doi:10.1007/BF00032938
[7] Gao H, Zhang T-Y, Tong P (1997) Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic. J Mech Phys Solids 45: 491–510 · doi:10.1016/S0022-5096(96)00108-1
[8] Gradshteyn IS, Ryzhik IM (1965) Tables of integrals, series and products. Academic Press, New York
[9] Kirilyuk VS (2008) Thermostressed state of a piezoelectric body with a plane crack under symmetric thermal load. Int Appl Mech 44: 320–330 · doi:10.1007/s10778-008-0048-8
[10] Kogan L, Hui CY, Molkov V (1996) Stress and induction field of a spherical inclusion or a penny shaped crack in a transversely isotropic piezoelectric material. Int J Solids Struct 33: 2719–2737 · Zbl 0903.73062 · doi:10.1016/0020-7683(95)00182-4
[11] Kuna M (2010) Fracture mechanics of piezoelectric materials–where are we right now?. Eng Fract Mech 77: 309–326 · doi:10.1016/j.engfracmech.2009.03.016
[12] Li YD, Lee KY, Feng FX (2011) Magnetostrictive/electrostrictive fracture of the piezomagnetic and piezoelectric layers in a multiferroic composite: anti-plane case. Int J Solids Struct 48: 1311–1317 · Zbl 1236.74081 · doi:10.1016/j.ijsolstr.2011.01.013
[13] Lucato S, Lupascu DC, Kamlah M, Rodel J, Lynch CS (2001) Constraint-induced crack initiation at electrode edges in piezoelectric ceramics. Acta Mater 49: 2751–2759 · doi:10.1016/S1359-6454(01)00169-0
[14] Narita F, Shindo Y, Hirama M (2010) Electric delayed fracture and localized polarization switching of cracked piezoelectric ceramics in three-point bending. Int J Damage Mech 19: 285–300 · doi:10.1177/1056789509103642
[15] Noda N, Kimura S (1998) Deformation of a piezothermoelectric composite plate considering the coupling effect. J Therm Stress 21: 359–379 · doi:10.1080/01495739808956152
[16] Ootao Y, Tanigawa Y (2002) Transient piezothermoelasticity for a cylindrical composite panel composed of angle-ply and piezoelectric laminae. Int J Solids Struct 39: 5737–5752 · Zbl 1087.74538 · doi:10.1016/S0020-7683(02)00422-5
[17] Park SB, Sun CT (1995) Effect of electric field on fracture of piezoelectric ceramics. Int J Fract 70: 203–216 · doi:10.1007/BF00012935
[18] Qin QH, Mai Y-W (1997) Crack growth prediction of an inclined crack in a half-plane thermopiezoelectric solid. Theor Appl Fract Mech 26: 185–191 · doi:10.1016/S0167-8442(96)00048-1
[19] Rao BN, Kuna M (2010) Interaction integrals for thermal fracture of functionally graded piezoelectric materials. Eng Fract Mech 77: 37–50 · doi:10.1016/j.engfracmech.2009.09.009
[20] Shang FL (2002) Analytical solutions for two penny-shaped crack problems in thermo-piezoelectric materials and their finite element comparisons. Int J Fract 117: 113–128 · doi:10.1023/A:1020976012521
[21] Shang F, Wang Z, Li Z (1996) Thermal stresses analysis of a three-dimensional crack in a thermopiezoelectric solid. Eng Fract Mech 55: 737–750 · doi:10.1016/0013-7944(96)00043-4
[22] Shang F, Kuna M, Kitamura T (2003) Theoretical investigation of an elliptical crack in thermopiezoelectric material. Part I: Analytical development. Theor Appl Fract Mech 40: 237–246 · doi:10.1016/j.tafmec.2003.08.003
[23] Shindo Y, Narita F, Horiguchi K, Magara Y, Yoshida M (2003) Electric fracture and polarization switching properties of piezoelectric ceramic PZT studied by the modified small punch test. Acta Mater 51: 4773–4782 · doi:10.1016/S1359-6454(03)00303-3
[24] Sosa H (1992) On the fracture mechanics of piezoelectric solids. Int J Solids Struct 29: 2613–2622 · Zbl 0775.73215 · doi:10.1016/0020-7683(92)90225-I
[25] Suo Z, Kuo C-M, Barnett DM, Willis JR (1992) Fracture mechanics for piezoelectric ceramics. J Mech Phys Solids 40: 739–765 · Zbl 0825.73584 · doi:10.1016/0022-5096(92)90002-J
[26] Ueda S, Kondo H (2008) Transient intensity factors for a parallel crack in a plate of a functionally graded piezoelectric material under thermal shock loading conditions. J Therm Stress 31: 211–232 · doi:10.1080/01495730701215313
[27] Verhoosel CV, Remmers JJC, Gutierrez M (2010) A partition of unity-based multiscale approach for modelling fracture in piezoelectric ceramics. Int J Numer Methods Eng 82: 966–994 · Zbl 1188.74074 · doi:10.1002/nme.2792
[28] Wang BL, Mai Y-W (2006) Near-tip fields for penny-shaped cracks in magnetoelectroelastic media. Key Eng Mater 312: 41–46 · doi:10.4028/www.scientific.net/KEM.312.41
[29] Wang BL, Noda N (2001) Design of a smart functionally graded thermopiezoelectric composite structure. Smart Mater Struct 10: 189–193 · doi:10.1088/0964-1726/10/2/303
[30] Wang BL, Noda N (2001) Thermally induced fracture of a smart functionally graded composite structure. Theor Appl Fract Mech 35: 93–109 · doi:10.1016/S0167-8442(00)00052-5
[31] Wang BL (2004) Exact electroelastic solutions for penny-shaped cracks under prescribed temperature or thermal flow. Appl Phys Lett 85: 2800–2802 · doi:10.1063/1.1789579
[32] Wang BL, Noda N (2004) Exact thermoelectroelasticity solution for a penny-shaped crack in piezoelectric materials. J Therm Stress 27: 241–251 · doi:10.1080/01495730490271018
[33] Wang BL, Noda N, Han JC, Du SY (2002) Surface thermal shock fracture of a semi-infinite piezoelectric medium (poling axis parallel to the crack plane). Mech Mater 34: 135–144 · doi:10.1016/S0167-6636(01)00095-3
[34] Wang ZK (1994) Penny-shaped crack in transversely isotropic piezoelectric materials. Acta Mech Sin 10: 49–60 · Zbl 0817.73052 · doi:10.1007/BF02487657
[35] Zhang TY, Gao CF (2004) Fracture behaviors of piezoelectric materials. Theor Appl Fract Mech 41: 339–379 · doi:10.1016/j.tafmec.2003.11.019
[36] Zhang TY, Zhao MH, Tong P (2002) Fracture of piezoelectric ceramics. Adv Appl Mech 38: 147–289 · doi:10.1016/S0065-2156(02)80104-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.