zbMATH — the first resource for mathematics

Reale: a Reconnection-based Arbitrary-Lagrangian-Eulerian method. (English) Zbl 1305.76067
Summary: We present a new Reconnection-based Arbitrary-Lagrangian-Eulerian (ALE) method. The main elements in a standard ALE simulation are an explicit Lagrangian phase in which the solution and grid are updated, a rezoning phase in which a new grid is defined, and a remapping phase in which the Lagrangian solution is transferred (conservatively interpolated) onto the new grid. In standard ALE methods the new mesh from the rezone phase is obtained by moving grid nodes without changing connectivity of the mesh. Such rezone strategy has its limitation due to the fixed topology of the mesh. In our new method we allow connectivity of the mesh to change in rezone phase, which leads to general polygonal mesh and allows to follow Lagrangian features of the mesh much better than for standard ALE methods. Rezone strategy with reconnection is based on using Voronoi tessellation. We demonstrate performance of our new method on series of numerical examples and show it superiority in comparison with standard ALE methods without reconnection.

76M20 Finite difference methods applied to problems in fluid mechanics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI
[1] F.L. Adessio, D.E. Carroll, K.K. Dukowicz, J.N. Johnson, B.A. Kashiwa, M.E. Maltrud, H.M. Ruppel, CAVEAT: a computer code for fluid dynamics problems with large distortion and internal slip, Technical Report LA-10613-MS, Los Alamos National Laboratory, 1986.
[2] Ahn, H.T.; Shashkov, M., Multi-material interface reconstruction on generalized polyhedral meshes, J. comput. phys., 226, 2096-2132, (2007) · Zbl 1388.76232
[3] Anderson, R.W.; Elliott, N.S.; Pember, R.B., An arbitrary-lagrangian – eulerian method with adaptive mesh refinement for the solution of the Euler equations, J. comput. phys., 199, 598-617, (2004) · Zbl 1126.76348
[4] Andrews, M.J., Accurate computation of convective transport in transient two-phase flow, Int. J. numer. meth. fluid, 21, 3, 205-222, (1995) · Zbl 0840.76045
[5] N.V. Ardelyan, V.I. Bychkov, K.V. Kosmachevskii, M.N. Sablin, Numerical simulating 2D plasma dynamics problems on the base of implicit free-Lagrange method, in: Proceedings of WEHSFF 2007 (ECCOMAS Thematic Conference) - WEST-EAST HIGH SPEED FLOW FIELD CONFERENCE, November 19-22, 2007, Moscow, Russia, 2007. Available on web: <http://wehsff.imamod.ru/pages/s7.htm>.
[6] Ardelyan, N.V.; Kosmatchevskii, K.V., Implicit free-Lagrange method for computing two-dimensional magnetogasdynamic flows, Comput. math. model., 6, 4, 209-224, (1995)
[7] Aurenhammer, F., Voronoi diagrams – a survey of fundamental geometric data structures, ACM comput. surveys, 23, 3, 345-405, (1991)
[8] F. Aurenhammer, R. Klein, Voronoi diagrams, Technical Report 198, Fern Universität Hagen, Department of Computer Science, Germany, 1996. Available on web: <http://www.pi6.fernuni-hagen.de/publ/tr198.pdf>.
[9] Baines, M.J., Moving finite elements, (1994), Oxford Science Publications, Clarendon Press Oxford · Zbl 0817.65082
[10] Ball, G.J., A free-Lagrange method for unsteady compressible flow: simulation of a confined cylindrical blast wave, Shock waves, 5, 311-325, (1996) · Zbl 0881.76059
[11] G.J. Ball, Sliding interfaces in a 2D free-Lagrange Godunov scheme on a Voronoi mesh, in: Workshop on Numerical Methods for Multi-material Flows, Institut Henri Poincaré, Paris, September 23-25, 2002. Available on web: <http://www.ann.jussieu.fr/∼despres/ABSTRACT/gjball_abs.pdf>.
[12] Ball, G.J.; Howell, B.P.; Leighton, T.G.; Schofield, M.J., Shock-induced collapse of a cylindrical air cavity in water: a free-Lagrange simulation, Shock waves, 10, 265-276, (2000) · Zbl 0980.76090
[13] Barabanov, R.A.; Butnev, O.I.; Volkov, S.G.; Jogov, B.M.; Pronin, V.A., Method meduza-3D for computation of three-dimensional problems of gas dynamics on irregular meshes (in Russian), Quest. atomic sci. tech. ser.: math. mod. phys. process., 2, 15-26, (2005)
[14] A.J. Barlow, ALE and AMR mesh refinement techniques for multi-material hydrodynamics problems, ICFD Workshop on Mesh Refinement Techniques 7th December 2005, <http://www.icfd.rdg.ac.uk/Workshops/AMR/meshreftechf.pdf>.
[15] A.J. Barlow, Challenges and recent progress in developing numerical methods for multi-material ALE hydrocodes, ICFD 25 Year Anniversary Conference 15-16th September 2008, Oxford University, <http://www.icfd.rdg.ac.uk/ICFD25/Talks/ABarlow.pdf>.
[16] Barlow, A.J., A compatible finite element multi-material ALE hydrodynamics algorithm, Int. J. numer. meth. fluid, 56, 953-964, (2008) · Zbl 1169.76030
[17] T.J. Barth, Numerical methods for gasdynamic systems on unstructured meshes, in: D. Kroner, M. Ohlberger, C. Rohde (Eds.), An Introduction to Recent Developments in Theory and Numerics for Conservation Laws, Proceedings of the International School on Theory and Numerics for Conservation Laws, Lecture Notes in Computational Science and Engineering, Springer, Berlin, 1997, pp. 195-284.
[18] Bauer, A.L.; Burton, D.E.; Caramana, E.J.; LoubFre, R.; Shashkov, M.J.; Whalen, P.P., The internal consistency, stability, and accuracy of the discrete, compatible formulation of Lagrangian hydrodynamics, J. comput. phys., 218, 2, 572-593, (2006) · Zbl 1161.76538
[19] Benson, D.J., An efficient, accurate, simple ALE method for nonlinear finite element programs, Comput. meth. appl. mech. eng., 72, 305-350, (1989) · Zbl 0675.73037
[20] Benson, D.J., Computational methods in Lagrangian and Eulerian hydrocodes, Comput. meth. appl. mech. eng., 99, 235-394, (1992) · Zbl 0763.73052
[21] Benson, D.J., Momentum advection on a staggered mesh, J. comput. phys., 100, 143-162, (1992) · Zbl 0758.76038
[22] Bower, A.F., Applied mechanics of solids, (2009), CRC Press
[23] J.U. Brackbill, J.J. Monaghan (Eds.), Proceedings of the workshop on particle methods in fluid dynamics and plasma physics, Comput. Phys. Commun. 8(1), 1987.
[24] Brackbill, J.U.; Saltzman, J.S., Adaptive zoning for singular problems in two dimensions, J. comput. phys., 46, 342-368, (1982) · Zbl 0489.76007
[25] Burton, D.E., Exact conservation of energy and momentum in staggered-grid hydrodynamics with arbitrary connectivity, Advances in the free-Lagrange method, (1990), Springer-Verlag New York
[26] D.E. Burton, Consistent finite-volume discretization of hydrodynamics conservation laws for unstructured grids, Report UCRL-JC-118788, Lawrence Livermore National Laboratory, 1994.
[27] D.E. Burton, Multidimensional discretization of conservation laws for unstructured polyhedral grids, Report UCRL-JC-118306, Lawrence Livermore National Laboratory, in: Proceedings of Second International Workshop on Analytical Methods and Process Optimization in Fluid and Gas Mechanics (SAMGOP), Arzamas-16, Russia, 1994.
[28] Campbell, J.C.; Shashkov, M.J., A tensor artificial viscosity using a mimetic finite difference algorithm, J. comput. phys., 172, 4, 739-765, (2001) · Zbl 1002.76082
[29] Campbell, J.C.; Shashkov, M.J., A compatible Lagrangian hydrodynamics algorithm for unstructured grids, Seltuk J. appl. math., 4, 2, 53-57, (2003) · Zbl 1150.76433
[30] Caramana, E.J.; Burton, D.E.; Shashkov, M.J.; Whalen, P.P., The construction of compatible hydrodynamics algorithms utilizing conservation of total energy, J. comput. phys., 146, 1, 227-262, (1998) · Zbl 0931.76080
[31] Caramana, E.J.; Loubère, R., “curl-q”: a vorticity damping artificial viscosity for Lagrangian hydrodynamics calculations, J. comput. phys., 215, 2, 385-391, (2006) · Zbl 1173.76380
[32] Caramana, E.J.; Shashkov, M.J., Elimination of artificial grid distorsion and hourglass-type motions by means of Lagrangian subzonal masses and pressures, J. comput. phys., 142, 521-561, (1998) · Zbl 0932.76068
[33] Caramana, E.J.; Shashkov, M.J.; Whalen, P.P., Formulations of artificial viscosity for multidimensional shock wave computations, J. comput. phys., 144, 70-97, (1998) · Zbl 1392.76041
[34] Carré, G.; Del Pino, S.; DesprTs, B.; Labourasse, E., A cell-centered Lagrangian hydrodynamics scheme in arbitrary dimension, J. comput. phys., 228, 14, 5160-5183, (2009) · Zbl 1168.76029
[35] R.A. Clark, Compressible Lagrangian hydrodynamics without Lagrangian cells, Report LAUR-85-1882, Los Alamos National Laboratory, 1985. · Zbl 0582.76080
[36] Clark, R.A., The evolution of HOBO, Comput. phys. commun., 48, 61-64, (1988)
[37] M.C. Cline, J.K. Dukowicz, F.L. Addessio, CAVEAT-GT: a general topology version of the caveat code, Technical Report LA-11812-MS, Los Alamos National Laboratory, 1990.
[38] Colella, P., A direct Eulerian MUSCL scheme for gas dynamics, SIAM J. stat. comput., 6, 1, 104-117, (1985) · Zbl 0562.76072
[39] W.P. Crowley, FLAG: a free-Lagrange method for numerically simulating hydrodynamic flows in two dimensions, in: M. Holt (Ed.), Proceedings of the Second International Conference on Numerical Methods in Fluid Dynamics, vol. 8, September 15-19, 1970, University of California, Berkeley, Lecture Notes in Physics, Springer, Berlin, 1971, pp. 37-43.
[40] DesprTs, B.; Mazeran, C., Lagrangian gas dynamics in two dimensions and Lagrangian systems, Arch. rational mech. anal., 178, 327-372, (2005) · Zbl 1096.76046
[41] Du, J.; Fix, B.; Glimm, J.; Li, X.; Li, Y.; Wu, L., A simple package for front tracking, J. comput. phys., 213, 2, 613-628, (2006) · Zbl 1089.65128
[42] Du, Q.; Emelianenko, M.; Gunzburger, M., Convergence of the Lloyd algorithm for computing centroidal Voronoi tesselations, SAIM J. numer. anal., 44, 1, 102-119, (2006) · Zbl 1115.65017
[43] Du, Q.; Faber, V.; Gunzburger, M., Centroidal Voronoi tesselations: applications and algorithms, SIAM rev., 41, 637-676, (1999) · Zbl 0983.65021
[44] Du, Q.; Gunzburger, M., Grid generation and optimization based on centroidal Voronoi tesselations, Appl. math. comput., 133, 591-607, (2002) · Zbl 1024.65118
[45] Dukowicz, J.K.; Cline, M.C.; Addessio, F.S., A general topology Godunov method, J. comput. phys., 82, 29-63, (1989) · Zbl 0665.76032
[46] Dukowicz, J.K.; Meltz, B., Vorticity errors in multidimensional Lagrangian codes, J. comput. phys., 99, 115-134, (1992) · Zbl 0743.76058
[47] Dukowicz, J.K., A simplified adaptive mesh technique derived from the moving finite element method, J. comput. phys., 56, 324-342, (1984) · Zbl 0568.65077
[48] Dukowicz, J.K.; Baumgardner, J., Incremental remapping as a transport/advection algorithm, J. comput. phys., 160, 318-335, (2000) · Zbl 0972.76079
[49] Dukowicz, J.K.; Kodis, J.W., Accurate conservative remapping (rezoning) for arbitrary-lagrangian – eulerian computations, SIAM J. stat. comput., 8, 305-321, (1987) · Zbl 0644.76085
[50] Dyachenko, V.F., The free point method for problems of continuous media, USSR comp. math. math. phys., 5, 4, 680-688, (1965)
[51] Dyachenko, V.F., Some new method for numerically solving nonstationary gas dynamics problems, Comput. meth. appl. mech. eng., 2, 3, 265-277, (1973) · Zbl 0266.76066
[52] Dyadechko, V.; Shashkov, M., Reconstruction of multi-material interfaces from moment data, J. comput. phys., 227, 5361-5384, (2008) · Zbl 1220.76048
[53] Farhat, C.; Geuzaine, P.; Grandmont, C., The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of the flow problems on the moving grids, J. comput. phys., 174, 669-694, (2001) · Zbl 1157.76372
[54] A.P. Favorskij, M. Yu. Shashkov, A.V. Solovjov, V.F. Tishkin, The Dirichlet particle method for the simulation of 2-D gas dynamic flows with strong deformations, in: A.A. Samarskii, M.P.Sapagovas (Eds.), Mathematical Modelling and Applied Mathematics, Proceedings of IMACS International Conference, Moscow/USSR June 18-23, 1990, pp. 153-162 (Elsevier Science Publishers North Holland, Amsterdam, 1992). · Zbl 0822.76068
[55] ()
[56] R.R. Giddings, Mesh movement via optimal transportation, in: Conference on Numerical Methods for Multi-material Flows Czech Technical University in Prague on September 10-14, 2007. Available on web: <http://www-troja.fjfi.cvut.cz/∼multimat07/prezentace.html>.
[57] Giuliani, S., An algorithm for continuous rezoning of the hydrodynamic grid in arbitrary-lagrangian – eulerian computer codes, Nucl. eng. des., 72, 205-212, (1982)
[58] Glimm, J.; Grove, J.; Li, X.-L.; Shyue nad, K.-M.; Zhang, Q.; Zeng, Y., Three-dimensional front tracking, SIAM J. sci. comput., 19, 703-727, (1998) · Zbl 0912.65075
[59] Glimm, J.; Grove, J.W.; Li, X.L.; Oh, W.; Sharp, D.H., A critical analysis of rayleigh – taylor growth rates, J. comput. phys., 169, 652-677, (2001) · Zbl 1011.76057
[60] Godunov, S.K.; Zabrodine, A.; Ivanov, M.; Kraiko, A.; Prokopov, G., Rtsolution numtrique des problfmes multidimensionnels de la dynamique des gaz, (1979), Mir
[61] Grandy, J., Conservative remapping and region overlays by intersecting arbitrary polyhedra, J. comput. phys., 148, 2, 133-466, (1999) · Zbl 0932.76073
[62] Haas, J.-F.; Sturtevant, B., Interaction of weak-shock waves, J. fluid mech., 181, 41-76, (1987)
[63] Hazins, V.M.; Svetsov, V.V., A conservative stable smoothness-enhancing free-Lagrangian method, J. comput. phys., 105, 2, 187-198, (1993) · Zbl 0768.76034
[64] Hirt, C.W.; Amsden, A.A.; Cook, J.L., An arbitrary-lagrangian – eulerian computing method for all flow speeds, J. comput. phys., 14, (1974), (reprinted in J. Comput. Phys. 135 (1997) 203-216) · Zbl 0938.76068
[65] P. Hoch, Mesh quality and conservative projection in Lagrangian compressible hydrodynamic, in: Conference on Numerical Methods for Multi-material Fluid Flows, Czech Technical University in Prague on September 10-14, 2007, <http://www-troja.fjfi.cvut.cz/multimat07/presentations/tuesday/Rebourcet_H>.
[66] Hoover, W.G., Smooth particle applied mechanics: the state of the art, (2006), World Scientific Publishing Co. Pvt. Ltd. · Zbl 1141.76001
[67] Howell, B.P.; Ball, G.J., Damping of mesh-induced errors in free-Lagrange simulations or richmayer – meshkov instability, Shock waves, 10, 253-264, (2000) · Zbl 1003.76053
[68] Howell, B.P.; Ball, G.J., A free-Lagrange augmented Godunov method for simulation of elastic – plastic solids, J. comput. phys., 175, 128-167, (2002) · Zbl 1043.74048
[69] Huang, Y.; Quin, H.; Wang, D., Centroidal Voronoi tesselation-based finite element superconvergence, Int. J. numer. meth. eng., 76, 1819-1839, (2008) · Zbl 1195.65171
[70] Kershaw, D.S.; Prasad, M.K.; Shaw, M.J.; Milovich, J.L., 3D unstructured mesh ALE hydrodynamics with the upwind discontinuous finite element method, Comput. meth. appl. mech. eng., 158, 81-116, (1998) · Zbl 0954.76045
[71] Kjellgren, P.; Hyvarien, J., An arbitrary-lagrangian – eulerian finite element method, Comput. mech., 21, 81-90, (1998) · Zbl 0911.76036
[72] Klein, R.; Lingas, A., A linear-time randomized algorithm for the bounded Voronoi diagram of a simple polygon, Int. J. comput. geomet. appl., 6, 3, 263-278, (1996) · Zbl 0859.68113
[73] G. Kluth, B. Desprès, Discretization of the hyperelasticity on unstructured mesh with cell-centered scheme, Technical Report R09063, Laboratoire Jacques-Louis Lions, Universitè Pierre et Marie Curie, 2009. Available on web: <http://www.ann.jussieu.fr/publications/2009/R09063.html>.
[74] Knupp, P.; Margolin, L.G.; Shashkov, M., Reference Jacobian optimization-based rezone strategies for arbitrary-lagrangian – eulerian methods, J. comput. phys., 176, 93-128, (2002) · Zbl 1120.76340
[75] Kuchařı´k, M.; Garimella, R.; Schofield, S.; Shashkov, M., A comparative study of interface reconstruction methods for multi-material ALE simulations, J. comput. phys., 229, 7, 2432-2452, (2010) · Zbl 1423.76343
[76] Kuchařı´k, M.; Shashkov, M., Extension of efficient, swept-integration-based conservative remapping method for meshes with changing connectivity, Int. J. numer. meth. fluid, 56, 8, 1359-1365, (2007) · Zbl 1384.65018
[77] Kuchařı´k, M.; Shashkov, M.; Wendroff, B., An efficient linearity-and-bound-preserving remapping methods, J. comput. phys., 188, 462-471, (2003) · Zbl 1022.65009
[78] Kull, H.J., Theory of the rayleigh – taylor instability, Phys. rep., 206, 197-325, (1991)
[79] Lipnikov, K.; Shashkov, M., The error-minimization-based strategy for moving mesh methods, Commun. comput. phys., 1, 1, 53-81, (2006) · Zbl 1115.76374
[80] Liu, G.R., Mesh free methods, Moving beyond the finite element method, (2003), CRC Press · Zbl 1031.74001
[81] Lohner, R.; Yang, C., Improved ALE mesh velocities for moving bodies, Commun. numer. meth. eng., 12, 599-608, (1996) · Zbl 0858.76042
[82] R. Loubère, First steps into ale inc(ubator) - version 2.0.0, Technical Report, Los Alamos National Laboratory Report LAUR-04-8840, 2004.
[83] Loubère, R.; Caramana, E.J., The force/work differencing of exceptional points in the discrete, compatible formulation of Lagrangian hydrodynamics, J. comput. phys., 216, 1, 1-18, (2006) · Zbl 1173.76389
[84] Loubère, R.; Shashkov, M., A subcell remapping method on staggered polygonal grids for arbitrary-lagrangian – eulerian methods, J. comput. phys., 204, 23, 155-160, (2004)
[85] Loubère, R.; Staley, M.; Wendroff, B., The repair paradigm: new algorithms and applications to compressible flow, J. comput. phys., 385-404, (2005) · Zbl 1138.76406
[86] Maire, P.-H., A high-order cell-centered Lagrangian scheme for compressible fluid flows in two-dimensional cylindrical geometry, J. comput. phys., 228, 6882-6915, (2009) · Zbl 1261.76021
[87] Maire, P.-H., A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes, J. comput. phys., 228, 2391-2425, (2009) · Zbl 1156.76434
[88] Maire, P.-H.; Abgrall, R.; Breil, J.; Ovadia, J., A cell-centered Lagrangian scheme for compressible flow problems, SIAM J. sci. comput., 29, 4, 1781-1824, (2007) · Zbl 1251.76028
[89] Maire, P.-H.; Breil, J., A second-order cell-centered Lagrangian scheme for two-dimensional compressible flow problems, Int. J. numer. meth. fluid, 56, 1417-1423, (2008) · Zbl 1151.76021
[90] Maire, P.-H.; Breil, J.; Galera, S., A cell-centered arbitrary-lagrangian – eulerian (ALE) method, Int. J. numer. meth. fluid, 56, 1161-1166, (2008) · Zbl 1384.76044
[91] Maire, P.-H.; Nkonga, B., Multi-scale Godunov-type method for cell-centered discrete Lagrangian hydrodynamics, J. comput. phys., 228, 799-821, (2009) · Zbl 1156.76039
[92] Margolin, L.G.; Shashkov, M.; Smolarkiewicz, P., A discrete operator calculus for finite difference approximations, Comp. meth. appl. mech. eng., 187, 365-383, (2000) · Zbl 0978.76063
[93] Margolin, L.G., Introduction to “an arbitrary-lagrangian – eulerian computing method for all flow speeds”, J. comput. phys., 135, 198-202, (1997) · Zbl 0938.76067
[94] Margolin, L.G.; Shashkov, M., Second-order sign-preserving conservative interpolation (remapping) on general grids, J. comput. phys., 184, 1, 266-298, (2003) · Zbl 1016.65004
[95] Mikhailova, N.V.; Tishkin, V.F.; Tyurina, N.N.; Favorskii, A.P.; Shashkovm, M.Y., Numerical modelling of two-dimensional gas-dynamic flows on a variable-structure mesh, USSR comput. math. math. phys., 26, 5, 74-84, (1988)
[96] Okabe, A.; Boots, B.; Sugihara, K.; Chiu, S.N., Spatial tesselations, Concepts and applications of Voronoi diagrams, (2000), Wiley
[97] Orlova, T.I.; Svetsov, V.V., Deep penetration of projectile material into the planet during the impact, Earth Moon planets, 71, 3, 255-263, (1995)
[98] O’Rourke, P.J.; Sahota, M.S., A variable explicit/implicit numerical method for calculating advection on unstructured meshes, J. comput. phys., 143, 312-345, (1998) · Zbl 0934.76060
[99] Pasta, J.R.; Ulam, S., Heuristic numerical work in some problems of hydrodynamics, Math. tables aids comput., XIII, 65, 1-12, (1959) · Zbl 0102.19403
[100] Peery, J.S.; Carroll, D.E., Multi-material ALE methods in unstructured grids, Comput. meth. appl. mech. eng., 187, 591-619, (2000) · Zbl 0980.74068
[101] R. Pember, R. Anderson, Comparison of direct Eulerian Godunov and Lagrange plus remap artificial viscosity schemes for compressible flow, Technical Report 2001-2644, AIAA, 2001.
[102] Pushkina, I.G.; Tishkin, V.F., Adaptive grids from Dirichlet cells for mathematical physics problems: a methodology for grid generation, examples, Math. model., 12, 3, 97-109, (2000) · Zbl 1027.76621
[103] Quirk, J.; Karni, S., On the dynamics of a shock – bubble interaction, J. fluid mech., 318, 129-163, (1996) · Zbl 0877.76046
[104] B. Rebourcet, Comments on the filtering of numerical instabilities in Lagrangian hydrocodes, in: Conference on Numerical Methods for Multi-material Fluid fLows, Czech Technical University in Prague on September 10-14, 2007, <http://www-troja.fjfi.cvut.cz/multimat07/presentations/tuesday/Rebourcet_f>.
[105] Rider, W.J.; Kothe, D.B., Reconstructing volume tracking, J. comput. phys., 121, 112-152, (1998) · Zbl 0933.76069
[106] Rudman, M., Volume tracking methods for interfacial flow calculations, Int. J. numer. meth. fluid, 24, 671-691, (1997) · Zbl 0889.76069
[107] M.S. Sahota, H.E. Trease, A three-dimensional free-Lagrange code for multimaterial flow simulations, Report LAUR-90-3383, Los Alamos National Laboratory, 1990.
[108] Scovazzi, G., Stabilized shock hydrodynamics: II. design and physical interpretation of the SUPG operator for Lagrangian computations, Comput. meth. appl. mech. eng., 196, 966-978, (2007) · Zbl 1120.76332
[109] Scovazzi, G.; Christon, M.A.; Hughes, T.J.R.; Shadid, J.N., Stabilized shock hydrodynamics: I. A Lagrangian method, Comput. meth. appl. mech. eng., 196, 923-966, (2007) · Zbl 1120.76334
[110] Scovazzi, G.; Love, E.; Shashkov, M.J., Multi-scale Lagrangian shock hydrodynamics on Q1/P0 finite elements: theoretical framework and two-dimensional computations, Comput. meth. appl. mech. eng., 197, 1056-1079, (2008) · Zbl 1169.76396
[111] Shashkov, M., Closure models for multimaterial cells in arbitrary-lagrangian – eulerian hydrocodes, Int. J. numer. meth. fluid, 56, 1497-1504, (2007) · Zbl 1151.76026
[112] Shashkov, M.; Wendroff, B., The repair paradigm and application to conservation laws, J. comput. phys., 198, 1, 265-277, (2004) · Zbl 1107.65341
[113] M.Yu. Shashkov, A.V. Solovjov, A generalization of the notion of Dirichlet cell for non-convex domain, Preprint No. 32 of Keldysh Institute of Applied Mathematics, USSR Academy of Sciences, Moscow, Russia, 1990 (in Russian).
[114] M.Yu. Shashkov, A.V. Solovjov, Numerical simulation of two-dimensional flows by the free-Lagrangian flow simulations, Report TUM-M9105, Mathematisches Institut, Technische Universität, Munchen, 1991. Available at <http://cnls.lanl.gov/∼shashkov>.
[115] Sofronov, I.D.; Rasskazova, V.V.; Nesterenko, L.V., The use of nonregular nets for solving two-dimensional non-stationary problems in gas dynamics, (), 82-121
[116] Sokolov, S.S.; Panov, A.I.; Voropinov, A.A.; Novikov, I.G.; Sobolev, I.V.; Yalozo, A.V., Method TIM for computation of three-dimensional problems of mechanics of continuum media using unstructured polyhedral Lagrangian meshes (in Russian), Quest. atomic sci. tech. ser.: math. mod. phys. process., 3, 37-52, (2005)
[117] Sokolov, S.S.; Voropinov, A.A.; Novikov, I.G.; Panov, A.I.; Sobolev, I.V.; Pushkarev, A.A., Method TIM-2D for computation of problems of mechanics of continuum media using unstructured polygonal with arbitrary connections at the nodes (in Russian), Quest. atomic sci. tech. ser.: math. mod. phys. process., 4, 29-44, (2006)
[118] Solovjov, A.; Solovjova, E.; Shashkov, M.; Tishkin, V.; Favorskii, A., Approximation of finite difference operators on mesh of Dirichlet cells, Differ. equat., 22, 863-872, (1986) · Zbl 0616.65021
[119] V. Springel, E pur si muove: Galiliean-invariant cosmological hydrodynamical simulations on a moving mesh, Mon. Not. R. Astron. Soc. (in press), arXiv:0901.4107, <http://arxiv.org/pdf/0901.4107>.
[120] Stoker, C.; Gay, C.; Bay, F.; Chenot, J.-L., A velocity approach for the ALE-method applied for 2D and 3D problems, ()
[121] ()
[122] Trease, H.E., Three-dimensional free-Lagrangian method hydrodynamics, Comput. phys. commun., 48, 39-50, (1988) · Zbl 0633.76028
[123] van Leer, B., Towards the ultimate conservative difference scheme, J. comput. phys., 32, 101-136, (1979) · Zbl 1364.65223
[124] VanderHeyden, W.B.; Kashiwa, B.A., Compatible fluxes from Van leer advection, J. comput. phys., 146, 1-28, (1998) · Zbl 0932.76058
[125] von Neumann, J.; Richtmyer, R.D., A method for the numerical calculations of hydrodynamical shocks, J. appl. phys., 21, 232-238, (1950) · Zbl 0037.12002
[126] Whitehurst, R., A free-Lagrange method for gas dynamics, Mon. not. R. astron. soc., 277, 655-680, (1995)
[127] Wilkins, M.L., Calculation of elastic plastic flow, Math. comput. phys., 3, (1964)
[128] A.M. Winslow, Equipotential zoning of two-dimensional meshes, Technical Report UCRL-7312, Lawrence Livermore National Laboratory, 1963.
[129] Winslow, A.M., Numerical solution of the quasilinear Poisson equations in a nonuniform triangle mesh, J. comput. phys., 1, 149-172, (1966) · Zbl 0254.65069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.