zbMATH — the first resource for mathematics

A two-dimensional gradient-elasticity theory for woven fabrics. (English) Zbl 1305.74024
Summary: A gradient elasticity theory is proposed for the mechanics of woven fabrics. This is motivated by a series of recent experiments in which strongly localized deformation features are observed in the so-called bias test. Such features are reminiscent of solutions to problems posed in the setting of gradient elasticity. In turn, gradient effects in woven fabrics may be motivated by the presence of a local length scale in the pattern of the weave. The presumed influence of this scale on macroscopic constitutive response leads naturally to a special gradient theory.

74B20 Nonlinear elasticity
74K99 Thin bodies, structures
74E99 Material properties given special treatment
Full Text: DOI
[1] Nadler, B.; Papadopoulos, P.; Steigmann, D.J., Convexity of the strain-energy function in a two-scale model of ideal fabrics, J. Elast., 84, 223-244, (2006) · Zbl 1098.74046
[2] Buckley, C.P.; Lloyd, D.W.; Konopasek, M., On the deformation of slender filaments with planar crimp: theory, numerical solution and applications to tendon collagen and textile materials, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., 372, 33-64, (1980) · Zbl 0462.73030
[3] Warren, W.E., The elastic properties of woven polymeric fabric, Polym. Eng. Sci., 30, 1309-1313, (1990)
[4] Nadler, B.; Papadopoulos, P.; Steigmann, D.J., Multi-scale constitutive modeling and numerical analysis of fabric material, Int. J. Solids Struct., 43, 206-221, (2006) · Zbl 1119.74535
[5] Ferretti, M.; Madeo, A.; dell’Isola, F.; Boisse, P., Modeling the onset of shear boundary layers in fibrous composite reinforcements by second-gradient theory, Z. Angew. Math. Phys., (2013) · Zbl 1302.74008
[6] Nadler, B.; Steigmann, D.J., A model for frictional slip in woven fabrics, C. R., Méc., 331, 797-804, (2003) · Zbl 1223.74014
[7] Coleman, B.D., Necking and drawing in polymeric fibers under tension, Arch. Ration. Mech. Anal., 83, 115-137, (1983) · Zbl 0535.73016
[8] Coleman, B.D.; Newman, D.C., On the rheology of cold drawing: I. elastic materials, J. Polym. Sci., Part B, Polym. Phys., 26, 1801-1822, (1988)
[9] Pipkin, A.C., Some developments in the theory of inextensible networks, Q. Appl. Math., 38, 343, (1980) · Zbl 0484.73009
[10] Pipkin, A.C., Plane traction problems for inextensible networks, Q. J. Mech. Appl. Math., 34, 415, (1981) · Zbl 0466.73037
[11] Pipkin, A.C., Equilibrium of tchebychev nets, Arch. Ration. Mech. Anal., 85, 81, (1984) · Zbl 0556.73046
[12] Steigmann, D.J.; Pipkin, A.C., Equilibrium of elastic nets, Philos. Trans. R. Soc. Lond. A, 335, 419-454, (1991) · Zbl 0734.73098
[13] Kuznetsov, E.N.: Underconstrained Structural Systems. Springer, Berlin (1991) · Zbl 0629.73084
[14] Alibert, J.; Seppecher, P.; dell’Isola, F., Truss modular beams with deformation energy depending on higher displacement gradients, Math. Mech. Solids, 8, 51-73, (2003) · Zbl 1039.74028
[15] Seppecher, P., Alibert, J.-J., dell’Isola, F.: Linear elastic trusses leading to continua with exotic mechanical interactions. Journal of Physics: Conference Series 319 (2011) · Zbl 1039.74028
[16] Wang, W.-B.; Pipkin, A.C., Inextensible networks with bending stiffness, Q. J. Mech. Appl. Math., 39, 343-359, (1986) · Zbl 0594.73047
[17] Wang, W.-B.; Pipkin, A.C., Plane deformations of nets with bending stiffness, Acta Mech., 65, 263-279, (1986) · Zbl 0602.73034
[18] Spencer, A.J.M.; Soldatos, K.P., Finite deformations of fibre-reinforced elastic solids with fibre bending stiffness, Int. J. Non-Linear Mech., 42, 355-368, (2007)
[19] Murdoch, A.I., Symmetry considerations for materials of second grade, J. Elast., 9, 43-50, (1979) · Zbl 0395.73001
[20] Elzanowski, M.; Epstein, M., The symmetry group of second-grade materials, Int. J. Non-Linear Mech., 27, 635-638, (1992) · Zbl 0825.73026
[21] Cusick, G.E., The response of fabric to shearing forces, J. Text. Inst., 52, t395-t406, (1961)
[22] Cao, J.; Akkerman, R.; Boisse, P.; Chen, J.; Cheng, H.S.; Graaf, E.F.; Zhu, B., Characterization of mechanical behavior of woven fabrics: experimental methods and benchmark results, Composites, Part A, Appl. Sci. Manuf., 39, 1037-1053, (2008)
[23] Ball, J.M.; Currie, J.C.; Olver, P.J., Null Lagrangians, weak continuity, and variational problems of arbitrary order, J. Funct. Anal., 41, 135-174, (1981) · Zbl 0459.35020
[24] Toupin, R.A., Theories of elasticity with couple stress, Arch. Ration. Mech. Anal., 17, 85-112, (1964) · Zbl 0131.22001
[25] Mindlin, R.D.; Tiersten, H.F., Effects of couple-stresses in linear elasticity, Arch. Ration. Mech. Anal., 11, 415-448, (1962) · Zbl 0112.38906
[26] Koiter, W.T., Couple-stresses in the theory of elasticity, Proc. K. Ned. Akad. Wet., 67, 17-44, (1964) · Zbl 0124.17405
[27] Germain, P., The method of virtual power in continuum mechanics, part 2: microstructure, SIAM J. Appl. Math., 25, 556-575, (1973) · Zbl 0273.73061
[28] dell’Isola, F.; Seppecher, P.; Madeo, A., Beyond Euler-Cauchy continua: the structure of contact actions in N-th gradient generalized continua: a generalization of the Cauchy tetrahedron argument, No. 535, 17-106, (2012) · Zbl 1451.74046
[29] dell’Isola, F.; Seppecher, P.; Madeo, A., How contact interactions may depend on the shape of Cauchy cuts in N-th gradient continua: approach “à la D’alembert”, Z. Angew. Math. Phys., 63, 1119-1141, (2012) · Zbl 1330.76016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.