×

The distribution of the maximum of a first order moving average: the continuous case. (English) Zbl 1305.62082

Summary: We give the cumulative distribution function of \(M_n\), the maximum of a sequence of \(n\) observations from a first order moving average. Solutions are first given in terms of repeated integrals and then for the case, where the underlying independent random variables have an absolutely continuous probability density function. When the correlation is positive, \[ P( M_n \leq x ) \;=\;\sum\limits _{j=1}^{\infty} \beta_{j,x} \;\nu_{j, x}^{n}, \] where \(\{\nu_{j,x}\}\) are the eigenvalues (singular values) of a Fredholm kernel and \(\beta_{j, x}\) are some coefficients determined later. A similar result is given when the correlation is negative. The result is analogous to large deviations expansions for estimates, since the maximum need not be standardized to have a limit. For the continuous case the integral equations for the left and right eigenfunctions are converted to first order linear differential equations. The eigenvalues satisfy an equation of the form \[ \sum\limits_{i=1}^{\infty} w_i (\lambda -\theta_i)^{-1}=\lambda -\theta_0 \] for certain known weights \(\{ w_i\}\) and eigenvalues \(\{\theta_i\}\) of a given matrix. This can be solved by truncating the sum to an increasing number of terms.
For the discrete case see [Zbl 1345.62126].

MSC:

62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62E15 Exact distribution theory in statistics
60G70 Extreme value theory; extremal stochastic processes
62G32 Statistics of extreme values; tail inference
62P12 Applications of statistics to environmental and related topics

Citations:

Zbl 1345.62126

Software:

R
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Albin, J.M.P.: Extremes for non-anticipating moving averages of totally skewed α-stable motion. Stat. Probab. Lett. 36, 289-297 (1997) · Zbl 0898.60061 · doi:10.1016/S0167-7152(97)00075-8
[2] Comtet, L.: Advanced Combinatorics. Reidel, Dordrecht (1974) · Zbl 0283.05001 · doi:10.1007/978-94-010-2196-8
[3] Cox, D.R., Hinkley, D.V.: Theoretical Statistics. Chapman and Hall, London (1974) · Zbl 0334.62003 · doi:10.1007/978-1-4899-2887-0
[4] Davis, R.A., Resnick, S.I.: Limit theory for moving averages of random variables with regularly varying tail probabilities. Ann. Probab. 13, 179-195 (1985) · Zbl 0562.60026 · doi:10.1214/aop/1176993074
[5] Davis, R.A., Resnick, S.I.: Extremes of moving averages of random variables from the domain of attraction of the double exponential distribution. Stoch. Process. Appl. 30, 41-68 (1988) · Zbl 0657.60028 · doi:10.1016/0304-4149(88)90075-0
[6] Davis, R.A., Resnick, S.I.: Basic properties and prediction of max-ARMA processes. Adv. Appl. Probab. 21, 781-803 (1989) · Zbl 0716.62098 · doi:10.2307/1427767
[7] Davis, R.A., Resnick, S.I.: Extremes of moving averages of random variables with finite endpoint. Ann. Probab. 19, 312-328 (1991) · Zbl 0726.60038 · doi:10.1214/aop/1176990546
[8] Davis, R., Marengo, J., Resnick, S.: Extremal properties of a class of multivariate moving averages (with discussion). In: Proceedings of the 45th Session of the International Statistical Institute, vol. 4 (Amsterdam, 1985). Bulletin de l’Institut International de Statistique, 51, vol. V, pp. 185-192 (1985) · Zbl 0645.62024
[9] Deheuvels, P.: Extremes of moving averages of iid random-variables. Adv. Appl. Probab. 20, 10 (1988)
[10] Durbin, J., Watson, G.S.: Testing for serial correlation in least squares regression I. Biometrika 37, 409-428 (1950) · Zbl 0039.35803
[11] Durbin, J., Watson, G.S.: Testing for serial correlation in least squares regression II. Biometrika 38, 159-178 (1951) · Zbl 0042.38201
[12] Durbin, J., Watson, G.S.: Testing for serial correlation in least squares regression III. Biometrika 58, 1-19 (1971) · Zbl 0225.62112
[13] Fasen, V.: Extremes of regularly varying Levy-driven mixed moving average processes. Adv. Appl. Probab. 37, 993-1014 (2005) · Zbl 1094.60038 · doi:10.1239/aap/1134587750
[14] Fasen, V.: Extremes of subexponential Levy driven moving average processes. Stoch. Process. Appl. 116, 1066-1087 (2006) · Zbl 1114.60042 · doi:10.1016/j.spa.2006.01.001
[15] Hall, A.: Extremes of integer-valued moving average models with regularly varying tails. Extremes 4, 219-239 (2001) · Zbl 1053.62064 · doi:10.1023/A:1015297421238
[16] Hall, A.: Extremes of integer-valued moving average models with exponential type tails. Extremes 6, 361-379 (2003) · Zbl 1088.60050 · doi:10.1007/s10687-004-4725-z
[17] Hall, A., Moreira, O.: On the extremes of a particular moving average count data model. Stat. Probab. Lett. 76, 135-141 (2006) · Zbl 1086.62098 · doi:10.1016/j.spl.2005.07.002
[18] Hall, A., Scotto, M.G.: Extremes of sub-sampled integer-valued moving average models with heavy-tailed innovations. Stat. Probab. Lett. 63, 97-105 (2003) · Zbl 1116.60337 · doi:10.1016/S0167-7152(03)00057-9
[19] Hall, A., Scotto, M.G., Ferreira, H.: On the extremal behaviour of generalised periodic sub-sampled moving average models with regularly varying tails. Extremes 7, 149-160 (2004) · Zbl 1090.62048 · doi:10.1007/s10687-005-6197-9
[20] Hall, A., Scotto, M.G., Cruz, J.: Extremes of integer-valued moving average sequences. Test 19, 359-374 (2010) · Zbl 1203.60056 · doi:10.1007/s11749-009-0158-6
[21] Klüppelberg, C., Lindner, A.: Extreme value theory for moving average processes with light-tailed innovations. Bernoulli 11, 381-410 (2005) · Zbl 1069.62041 · doi:10.3150/bj/1120591182
[22] Leadbetter, M.R., Lindgren, G., Rootzén, H.: Extremes and Related Properties of Random Sequences. Springer, New York (1983) · Zbl 0518.60021 · doi:10.1007/978-1-4612-5449-2
[23] Martins, A.P., Ferreira, H.: Extremes of periodic moving averages of random variables with regularly varying tail probabilities. SORT 28, 161-175 (2004) · Zbl 1274.60168
[24] Nadarajah, S.: Extremes of daily rainfall in west central Florida. Clim. Change 69, 325-342 (2005) · doi:10.1007/s10584-005-1812-y
[25] Nadarajah, S., Mitov, K.: Asymptotics of maxima of discrete random variables. Extremes 5, 287-294 (2002) · Zbl 1035.60032 · doi:10.1023/A:1024081112501
[26] O’Brien, G.L.: Extreme values for stationary and Markov sequences. Ann. Probab. 15, 281-291 (1987) · Zbl 0619.60025 · doi:10.1214/aop/1176992270
[27] Park, Y.S.: Extreme value of moving average processes with negative binomial noise distribution. J. Korean Stat. Soc. 21, 167-177 (1992)
[28] Pogorzelski, W.: Integral Equations and their Applications, vol. 1. Pergamon, Oxford (1966) · Zbl 0137.30502
[29] R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2012)
[30] Rao, C.R.: Linear Statistical Inference and its Applications, 2nd edn. Wiley, New York (1973) · Zbl 0256.62002 · doi:10.1002/9780470316436
[31] Resnick, S.I.: Extreme Values, Regular Variation, and Point Processes. Springer, New York (1987) · Zbl 0633.60001 · doi:10.1007/978-0-387-75953-1
[32] Resnick, S.I.: Moving averages—convolutions of distributions which are both subexponential and in a domain of attraction of an extreme value law. Adv. Appl. Probab. 20, 5 (1988)
[33] Rootzén, H.: Extremes of moving averages of stable processes. Ann. Probab. 6, 847-869 (1978) · Zbl 0394.60025 · doi:10.1214/aop/1176995432
[34] Rootzén, H.: Extreme value theory for moving average processes. Ann. Probab. 14, 612-652 (1986) · Zbl 0604.60019 · doi:10.1214/aop/1176992534
[35] Scotto, M., Ferreira, H.: Extremes of deterministic sub-sampled moving averages with heavy-tailed innovations. Appl. Stoch. Model. Bus. Ind. 19, 303-313 (2003) · Zbl 1051.60027 · doi:10.1002/asmb.500
[36] Stuart, A., Ord, K.: Kendall’s Advanced Theory of Statistics, vol. 1, 5th edn. Griffin, London (1987) · Zbl 0621.62001
[37] Withers, C.S., McGavin, P.: Expressions for the normal distribution and repeated normal integrals. Stat. Probab. Lett. 76, 479-487 (2006) · Zbl 1086.62017 · doi:10.1016/j.spl.2005.08.015
[38] Withers, C.S., Nadarajah, S.: The distribution of the maximum of a first order autoregressive process: the continuous case. Metrika 74, 247-266 (2011) · Zbl 1230.62124 · doi:10.1007/s00184-010-0301-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.