×

zbMATH — the first resource for mathematics

On twin edge colorings of graphs. (English) Zbl 1305.05068
Summary: A twin edge \(k\)-coloring of a graph \(G\) is a proper edge coloring of \(G\) with the elements of \(Z_{k}\) so that the induced vertex coloring in which the color of a vertex \(v\) in \(G\) is the sum (in \(Z_{k}\)) of the colors of the edges incident with \(v\) is a proper vertex coloring. The minimum \(k\) for which \(G\) has a twin edge \(k\)-coloring is called the twin chromatic index of \(G\). Among the results presented are formulas for the twin chromatic index of each complete graph and each complete bipartite graph.
Reviewer: Reviewer (Berlin)

MSC:
05C15 Coloring of graphs and hypergraphs
05C70 Edge subsets with special properties (factorization, matching, partitioning, covering and packing, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] L. Addario-Berry, R.E.L. Aldred, K. Dalal and B.A. Reed, Vertex colouring edge partitions, J. Combin. Theory (B) 94 (2005) 237-244. doi:10.1016/j.jctb.2005.01.001 · Zbl 1074.05031
[2] M. Anholcer, S. Cichacz and M. Milaniˇc, Group irregularity strength of connected graphs, J. Comb. Optim., to appear. doi:10.1007/s10878-013-9628-6 · Zbl 1316.05078
[3] G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular networks, Congr. Numer. 64 (1988) 187-192. · Zbl 0671.05060
[4] G. Chartrand, L. Lesniak and P. Zhang, Graphs & Digraphs: 5th Edition (Chapman & Hall/CRC, Boca Raton, FL, 2010).
[5] G. Chartrand and P. Zhang, Chromatic Graph Theory (Chapman & Hall/CRC, Boca Raton, FL, 2008). doi:10.1201/9781584888017
[6] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 16 (2013) #DS6. · Zbl 0953.05067
[7] R.B. Gnana Jothi, Topics in Graph Theory, Ph.D. Thesis, Madurai Kamaraj University (1991).
[8] S.W. Golomb, How to number a graph, in: Graph Theory and Computing R.C. Read (Ed.), (Academic Press, New York, 1972) 23-37. · Zbl 0293.05150
[9] R. Jones, Modular and Graceful Edge Colorings of Graphs, Ph.D. Thesis, Western Michigan University (2011).
[10] R. Jones, K. Kolasinski, F. Fujie-Okamoto and P. Zhang, On modular edge-graceful graphs, Graphs Combin. 29 (2013) 901-912. doi:10.1007/s00373-012-1147-1 · Zbl 1268.05174
[11] R. Jones, K. Kolasinski and P. Zhang, A proof of the modular edge-graceful trees conjecture, J. Combin. Math. Combin. Comput. 80 (2012) 445-455. · Zbl 1247.05207
[12] M. Karoński, T. Luczak and A. Thomason, Edge weights and vertex colours, J. Combin. Theory (B) 91 (2004) 151-157. doi:10.1016/j.jctb.2003.12.001 · Zbl 1042.05045
[13] A. Rosa, On certain valuations of the vertices of a graph, in: Theory of Graphs, Proc. Internat. Symposium Rome 1966 (Gordon and Breach, New York 1967) 349-355.
[14] V.G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Analiz. 3 (1964) 25-30 (in Russian).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.